Package Methods (0.5.0)

Summary of entries of Methods for langchain-google-cloud-sql-pg.

langchain_google_cloud_sql_pg.chat_message_history._aget_messages

_aget_messages(
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 session_id: str,
 table_name: str,
) -> typing.List[langchain_core.messages.base.BaseMessage]

Retrieve the messages from PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history._aget_messages

langchain_google_cloud_sql_pg.engine._get_iam_principal_email

_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str

Get email address associated with current authenticated IAM principal.

See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email

langchain_google_cloud_sql_pg.vectorstore.cosine_similarity

cosine_similarity(
 X: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
 Y: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
) -> numpy.ndarray

Row-wise cosine similarity between two equal-width matrices.

See more: langchain_google_cloud_sql_pg.vectorstore.cosine_similarity

langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance

maximal_marginal_relevance(
 query_embedding: numpy.ndarray,
 embedding_list: list,
 lambda_mult: float = 0.5,
 k: int = 4,
) -> typing.List[int]

Calculate maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message

aadd_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

aadd_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear

aclear() -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

add_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear

clear() -> None

langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute

_aexecute(query: str, params: typing.Optional[dict] = None)

langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute_outside_tx

_aexecute_outside_tx(query: str)

langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

_aload_table_schema(table_name: str) -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

ainit_document_table(
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 store_metadata: bool = True,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

ainit_vectorstore_table(
 table_name: str,
 vector_size: int,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: str = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_

_generate_next_value_(start, count, last_values)

Generate the next value when not given.

See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema

_aload_table_schema() -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

aadd_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

adelete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

alazy_load() -> typing.AsyncIterator[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

aload() -> typing.List[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

langchain_google_cloud_sql_pg.loader.PostgresLoader.create

create(
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 query: typing.Optional[str] = None,
 table_name: typing.Optional[str] = None,
 content_columns: typing.Optional[typing.List[str]] = None,
 metadata_columns: typing.Optional[typing.List[str]] = None,
 metadata_json_column: typing.Optional[str] = None,
 format: typing.Optional[str] = None,
 formatter: typing.Optional[typing.Callable] = None,
)

Constructor for PostgresLoader .

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create

langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.load

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents

aadd_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts

aadd_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

add_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts

add_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete

adelete(
 ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

Delete by vector ID or other criteria.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

afrom_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 table_name: str,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

afrom_texts(
 texts: typing.List[str],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 table_name: str,
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

amax_marginal_relevance_search(
 query: str,
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

amax_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search

asimilarity_search(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector

asimilarity_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

asimilarity_search_with_score(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Run similarity search with distance asynchronously.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

create(
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 embedding_service: langchain_core.embeddings.embeddings.Embeddings,
 table_name: str,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
 distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 index_query_options: typing.Optional[
 langchain_google_cloud_sql_pg.indexes.QueryOptions
 ] = None,
)

Constructor for PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete

delete(
 ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

Delete by vector ID or other criteria.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

from_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 table_name: str,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

from_texts(
 texts: typing.List[str],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 table_name: str,
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
)

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
 query: str,
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search

similarity_search(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector

similarity_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score

similarity_search_with_score(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.