Package Methods (0.13.0)

Summary of entries of Methods for langchain-google-cloud-sql-pg.

langchain_google_cloud_sql_pg.engine._get_iam_principal_email

_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str

Get email address associated with current authenticated IAM principal.

See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory

PostgresChatMessageHistory(
 key: object,
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 history: langchain_google_cloud_sql_pg.async_chat_message_history.AsyncPostgresChatMessageHistory,
)

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message

aadd_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

aadd_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

Append a list of messages to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear

aclear() -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

add_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

Append a list of messages to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear

clear() -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create

create(
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 session_id: str,
 table_name: str,
 schema_name: str = "public",
) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory

Create a new PostgresChatMessageHistory instance.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync

create_sync(
 engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
 session_id: str,
 table_name: str,
 schema_name: str = "public",
) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory

Create a new PostgresChatMessageHistory instance.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync

langchain_google_cloud_sql_pg.engine.Column.__post_init__

__post_init__()

Check if initialization parameters are valid.

See more: langchain_google_cloud_sql_pg.engine.Column.post_init

langchain_google_cloud_sql_pg.engine.PostgresEngine

PostgresEngine(
 key: object,
 pool: sqlalchemy.ext.asyncio.engine.AsyncEngine,
 loop: typing.Optional[asyncio.events.AbstractEventLoop],
 thread: typing.Optional[threading.Thread],
)

PostgresEngine constructor.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine

langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table

_ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_checkpoint_table

_ainit_checkpoint_table(
 table_name: str = "checkpoints", schema_name: str = "public"
) -> None

Create PgSQL tables to save checkpoints.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_checkpoint_table

langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table

_ainit_vectorstore_table(
 table_name: str,
 vector_size: int,
 schema_name: str = "public",
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: typing.Union[
 str, langchain_google_cloud_sql_pg.engine.Column
 ] = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table

langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

_aload_table_schema(
 table_name: str, schema_name: str = "public"
) -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

langchain_google_cloud_sql_pg.engine.PostgresEngine._create

_create(
 project_id: str,
 region: str,
 instance: str,
 database: str,
 ip_type: typing.Union[str, google.cloud.sql.connector.enums.IPTypes],
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
 thread: typing.Optional[threading.Thread] = None,
 quota_project: typing.Optional[str] = None,
 iam_account_email: typing.Optional[str] = None,
 engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine

Create a PostgresEngine instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._create

langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async

_run_as_async(
 coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T],
) -> langchain_google_cloud_sql_pg.engine.T

Run an async coroutine asynchronously.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async

langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync

_run_as_sync(
 coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T],
) -> langchain_google_cloud_sql_pg.engine.T

Run an async coroutine synchronously.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync

langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance

afrom_instance(
 project_id: str,
 region: str,
 instance: str,
 database: str,
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 ip_type: typing.Union[
 str, google.cloud.sql.connector.enums.IPTypes
 ] = IPTypes.PUBLIC,
 quota_project: typing.Optional[str] = None,
 iam_account_email: typing.Optional[str] = None,
 engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine

Create a PostgresEngine from a Postgres instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table

ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_checkpoint_table

ainit_checkpoint_table(
 table_name: str = "checkpoints", schema_name: str = "public"
) -> None

Create an PgSQL table to save checkpoint messages.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_checkpoint_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

ainit_document_table(
 table_name: str,
 schema_name: str = "public",
 content_column: str = "page_content",
 metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 store_metadata: bool = True,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

ainit_vectorstore_table(
 table_name: str,
 vector_size: int,
 schema_name: str = "public",
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: typing.Union[
 str, langchain_google_cloud_sql_pg.engine.Column
 ] = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.close

close() -> None

Dispose of connection pool.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.close

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine

from_engine(
 engine: sqlalchemy.ext.asyncio.engine.AsyncEngine,
 loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine

Create an PostgresEngine instance from an AsyncEngine.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args

from_engine_args(
 url: str | sqlalchemy.engine.url.URL, **kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine

Create an PostgresEngine instance from arguments.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance

from_instance(
 project_id: str,
 region: str,
 instance: str,
 database: str,
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 ip_type: typing.Union[
 str, google.cloud.sql.connector.enums.IPTypes
 ] = IPTypes.PUBLIC,
 quota_project: typing.Optional[str] = None,
 iam_account_email: typing.Optional[str] = None,
 engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine

Create a PostgresEngine from a Postgres instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table

init_chat_history_table(table_name: str, schema_name: str = "public") -> None

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_checkpoint_table

init_checkpoint_table(
 table_name: str = "checkpoints", schema_name: str = "public"
) -> None

Create Cloud SQL tables to store checkpoints.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_checkpoint_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table

init_document_table(
 table_name: str,
 schema_name: str = "public",
 content_column: str = "page_content",
 metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 store_metadata: bool = True,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table

init_vectorstore_table(
 table_name: str,
 vector_size: int,
 schema_name: str = "public",
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: typing.Union[
 str, langchain_google_cloud_sql_pg.engine.Column
 ] = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table

langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options

langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_

_generate_next_value_(start, count, last_values)

Generate the next value when not given.

See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value

langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options

langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string

to_string()

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string

langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options

langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string

to_string()

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string

langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.