ranger: A Fast Implementation of Random Forests
A fast implementation of Random Forests, particularly suited for high
dimensional data. Ensembles of classification, regression, survival and
probability prediction trees are supported. Data from genome-wide association
studies can be analyzed efficiently. In addition to data frames, datasets of
class 'gwaa.data' (R package 'GenABEL') and 'dgCMatrix' (R package 'Matrix')
can be directly analyzed.
Version:
0.17.0
Depends:
R (≥ 3.1)
Published:
2024年11月08日
Author:
Marvin N. Wright [aut, cre],
Stefan Wager [ctb],
Philipp Probst [ctb]
Maintainer:
Marvin N. Wright <cran at wrig.de>
NeedsCompilation:
yes
Documentation:
Downloads:
Reverse dependencies:
Reverse depends:
causalweight,
ClassificationEnsembles,
Iscores,
LogisticEnsembles,
multimedia,
OptHoldoutSize,
PKLMtest,
RfEmpImp,
SPARRAfairness,
SpatialML,
tuneRanger
Reverse imports:
ADAPTS,
alookr,
AmpGram,
AmyloGram,
AnimalSequences,
arf,
AWAggregator,
Boruta,
C443,
CancerGram,
CaseBasedReasoning,
CCI,
ClassifyR,
collinear,
comets,
CompositionalML,
CoxAIPW,
crossurr,
ddecompose,
ddml,
discSurv,
drpop,
dsld,
e2tree,
EFAfactors,
enmSdmX,
fairadapt,
flevr,
fuzzylink,
gapclosing,
geomod,
GRSxE,
handwriterRF,
hedgedrf,
hpiR,
hypoRF,
influential,
Infusion,
ipd,
IVDML,
ldmppr,
MDEI,
memoria,
metaforest,
meteo,
miceRanger,
missForest,
missForestPredict,
missRanger,
mistyR,
MLDataR,
MLFS,
mlmts,
MRTAnalysis,
MSiP,
multiclassPairs,
MUVR2,
ocf,
OOBCurve,
optRF,
orf,
outForest,
phenomis,
PND.heter.cluster,
poolVIM,
PrInCE,
quantregRanger,
radiant.model,
randomForestExplainer,
RaSEn,
RCAS,
REMP,
rfinterval,
RFlocalfdr,
rfVarImpOOB,
rfvimptest,
riskRegression,
rjaf,
rmweather,
RNAmodR.ML,
RobustPrediction,
roseRF,
RPIV,
sae.projection,
sambia,
scDiagnostics,
scHiCcompare,
SCORPIUS,
SEMdeep,
seqimpute,
shadowVIMP,
simPop,
SISIR,
SLOS,
solitude,
spatialRF,
spFSR,
spm,
stablelearner,
Statial,
StratifiedMedicine,
subscreen,
synthpop,
TangledFeatures,
text2emotion,
text2sdg,
tramicp,
TSCI,
tsensembler,
ubair,
utsf,
vaccine,
VIM,
VIMPS,
viraldomain,
viralmodels,
worcs
Reverse suggests:
arenar,
autostats,
batchtools,
biotmle,
bnns,
breakDown,
butcher,
CALIBERrfimpute,
CausalGPS,
cdgd,
confcons,
cpi,
DALEX,
DALEXtra,
decoupleR,
DeepLearningCausal,
DirectEffects,
dlookr,
DoubleML,
drifter,
dynwrap,
ENMTools,
explainer,
FactorHet,
fairmodels,
familiar,
fastml,
fastshap,
filtro,
finetune,
flowml,
fmeffects,
forestControl,
fuseMLR,
GenericML,
HPLB,
iBreakDown,
iml,
important,
ingredients,
innsight,
knockoff,
lime,
lmtp,
MachineShop,
MantaID,
mcboost,
micd,
mice,
miesmuschel,
mllrnrs,
mlr,
mlr3fairness,
mlr3learners,
mlr3mbo,
mlr3pipelines,
mlr3shiny,
mlr3spatial,
mlr3summary,
mlr3superlearner,
mlr3tuningspaces,
mlr3viz,
mlrCPO,
mlrintermbo,
mlsurvlrnrs,
MLwrap,
modelDown,
modelStudio,
multiDEGGs,
nestedcv,
nlpred,
parsnip,
pathMED,
pdp,
PieGlyph,
pminternal,
polle,
PortfolioTesteR,
postcard,
purge,
qeML,
r2pmml,
RobinCar,
SAiVE,
SDModels,
sense,
shapr,
sirus,
soilassessment,
sperrorest,
spmodel,
stacks,
SuperLearner,
superml,
survex,
targeted,
tdarec,
text,
tidyAML,
tidypredict,
tidysdm,
tidysynthesis,
topdownr,
tram,
transportr,
tree.interpreter,
treeshap,
txshift,
varImp,
vetiver,
vimp,
vivid,
VSURF
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ranger
to link to this page.