randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance

A set of tools to help explain which variables are most important in a random forests. Various variable importance measures are calculated and visualized in different settings in order to get an idea on how their importance changes depending on our criteria (Hemant Ishwaran and Udaya B. Kogalur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa.2009.tm08622>, Leo Breiman (2001) <doi:10.1023/A:1010933404324>).

Version: 0.10.1
Depends: R (≥ 3.0)
Imports: data.table (≥ 1.10.4), dplyr (≥ 0.7.1), DT (≥ 0.2), GGally (≥ 1.3.0), ggplot2 (≥ 2.2.1), ggrepel (≥ 0.6.5), randomForest (≥ 4.6.12), ranger (≥ 0.9.0), reshape2 (≥ 1.4.2), rmarkdown (≥ 1.5)
Suggests: knitr, MASS (≥ 7.3.47), testthat
Published: 2020年07月11日
Author: Aleksandra Paluszynska [aut], Przemyslaw Biecek [aut, ths], Yue Jiang ORCID iD [aut, cre]
Maintainer: Yue Jiang <rivehill at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL]
NeedsCompilation: no
Materials: README, NEWS

Documentation:

Downloads:

macOS binaries: r-release (arm64): randomForestExplainer_0.10.1.tgz, r-oldrel (arm64): randomForestExplainer_0.10.1.tgz, r-release (x86_64): randomForestExplainer_0.10.1.tgz, r-oldrel (x86_64): randomForestExplainer_0.10.1.tgz

Reverse dependencies:

Reverse suggests: sits

Linking:

Please use the canonical form https://CRAN.R-project.org/package=randomForestExplainer to link to this page.

AltStyle によって変換されたページ (->オリジナル) /