tree.interpreter: Random Forest Prediction Decomposition and Feature Importance Measure

An R re-implementation of the 'treeinterpreter' package on PyPI <https://pypi.org/project/treeinterpreter/>. Each prediction can be decomposed as 'prediction = bias + feature_1_contribution + ... + feature_n_contribution'. This decomposition is then used to calculate the Mean Decrease Impurity (MDI) and Mean Decrease Impurity using out-of-bag samples (MDI-oob) feature importance measures based on the work of Li et al. (2019) <doi:10.48550/arXiv.1906.10845>.

Version: 0.1.3
Imports: Rcpp (≥ 1.0.2)
LinkingTo: Rcpp, RcppArmadillo
Suggests: MASS, randomForest, ranger, testthat (≥ 2.1.0), knitr, rmarkdown, covr
Published: 2025年09月18日
Author: Qingyao Sun [aut, cre]
Maintainer: Qingyao Sun <sunqingyao19970825 at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README, NEWS

Documentation:

Vignettes: MDI (source, R code)

Downloads:

Windows binaries: r-devel: tree.interpreter_0.1.3.zip, r-release: tree.interpreter_0.1.3.zip, r-oldrel: tree.interpreter_0.1.3.zip
macOS binaries: r-release (arm64): tree.interpreter_0.1.3.tgz, r-oldrel (arm64): tree.interpreter_0.1.3.tgz, r-release (x86_64): tree.interpreter_0.1.3.tgz, r-oldrel (x86_64): tree.interpreter_0.1.3.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=tree.interpreter to link to this page.

AltStyle によって変換されたページ (->オリジナル) /