Showing posts with label counting problems. Show all posts
Showing posts with label counting problems. Show all posts

Saturday, August 28, 2010

Video Solution and Discussion of Twitter SAT Probability Question from 8-25-10


If interested in purchasing my NEW 2012 Math Challenge Problem/Quiz book, click on BUY NOW at top of right sidebar. 175 problems divided into 35 quizzes with answers at back. Suitable for SAT/Math Contest/Math I/II Subject Tests and Daily/Weekly Problems of the Day. Includes both multiple choice and constructed response items.
Price is 9ドル.95. Secured pdf will be emailed when purchase is verified. DON'T FORGET TO SEND ME AN EMAIL (dmarain "at gmail dot com") FIRST SO THAT I CAN SEND THE ATTACHMENT!
------------------------------------------------------------------------------

I decided to post a video solution of the Twitter problem I posted on 8-25-10:

4 red, 2 blue cards; 4 are chosen at random. What is the probability that 2 of the cards will be red?

Because of the 140 character restriction on Twitter, the questions are often highly abbreviated and I actually consider it a "fun" challenge to write the question both concisely and clearly. Of course, as we all know about human interpretation of word problems, "clear" is in the eye of the beholder!

There's no doubt that the question above needs some fleshing out and might appear on the SAT and other standardized tests something like this:

A set of six cards contains four red and two blue cards. If four cards are chosen at random, what is the probability that exactly two of these cards will be red?

I'm sure my astute readers can improve on this wording but we'll leave it at this.

A few questions naturally pop up:

(1) Could this really be an SAT/Standardized Test question? Well, as I state in the video below, a question quite similar to this appeared on the College Board website the other day as the Question of the Day.

(2) For whom is the video intended? Everyone who happens upon it! I certainly wrote it to be helpful to students who will be taking the PSAT/SAT in the near future. Rather than simply presenting a single quick efficient solution, I demo'd 2-3 methods and indicated some important strategies and reviewed key pieces of knowledge to be successful on these harder probability questions. By the way, someone who is comfortable with probability will surely not find this question so formidable, but we're talking here about high school students or even undergraduates who struggle mightily with these.

(3) I'm hoping that the video will also serve as a catalyst for dialog in your math department. From the inception of this blog, I've never even intimated that a suggested way of explaining a concept, skill or a problem solution is in any way prescriptive. I encourage you to continue using whatever instructional methods have worked for you and to share these with our readers! However, for novice teachers or those who wish to see other approaches, I hope it will have some benefit. Of course, the video is not in a classroom. There are no students asking or being asked questions. There are no interruptions and I have a captive audience (except for my dogs who bark incessantly!).

SOME KEY STRATEGIES/TIPS/FACTS FOR PROBABILITY QUESTIONS

(1) It is highly recommended that students begin by listing 2-3 possible outcomes and to include at least one that is NOT one of the desired outcomes! This will help you to decide on a plan: organized list vs more advanced counting/probability methods. Further, you can ask yourself the key question in all counting/probability problems: DOES ORDER COUNT!

(2) Although it appears difficult for most test-takers to be systematic when making a list under test-taking conditions, preparation is critical here. If one practices several of these in the weeks leading up to the test, the chances of success improve dramatically. Did I just suggest preparation and practice could make a difference!

Where do you find these problems? Any SAT/ACT review book or my Twitter Problems of the Day or my upcoming SAT Challenge Quiz book to name a few sources...

(3) The basic definition of probability should always be in the forefront of your mind:

P(an event) = TOTAL NUMBER OF WAYS FOR THAT EVENT TO OCCUR DIVIDED BY TOTAL NUMBER OF OUTCOMES.

As indicated in the video, one can and should think of this ratio as TWO SEPARATE COUNTING PROBLEMS! Do the denominator first, i.e., the TOTAL number of possible outcomes. In the Twitter problem it is 15 if order is disregarded. Whether you arrive at 15 by listing/counting or by combinations methods, the denominator is 15 and is a completely separate question from "How many ways are there to get 2 red and 2 blue cards?"

(4) Finally, there are other methods for solving this probability question using Laws of Probabilities and/or permutation methods. I was going to make a 2nd video but I'm not so sure about that now.

An important point about the video below: I used 4 Blue and 2 Red cards, the opposite of the original Twitter problem but that won't change the final result!




[埋込みオブジェクト:http://www.youtube.com/v/305z8R9d56k?fs=1&hl=en_US]



Look for my other videos on my YouTube channel MathNotationsVids . Look for all of my Twitter SAT Problems on twitter.com/dmarain .

As I develop my Facebook page further, I may start posting these questions there as well as my videos. Facebook allows up to 20 minutes videos, much less restrictive than YouTube's 10 minute limit.


If interested in purchasing my new Math Challenge Problem/Quiz book, click on BUY NOW at top of right sidebar. 175 problems divided into 35 quizzes with answers at back. Suitable for SAT/Math Contest practice or Problems of the Day/Week.
Price is 9ドル.99 and secured pdf will be emailed when purchase is verified. DON'T FORGET TO SEND ME AN EMAIL FIRST SO THAT I CAN SEND THE ATTACHMENT!




"All Truth passes through Three Stages:
First, it is Ridiculed... Second, it is Violently Opposed... Third, it is Accepted as being Self-Evident." - Arthur Schopenhauer (1778-1860)

"You've got to be taught To hate and fear, You've got to be taught From year to year, It's got to be drummed In your dear little ear You've got to be carefully taught" --from South Pacific

Tuesday, March 9, 2010

Counting, Multiplication Principle, Pigeonhole Principle and Reasoning for Middle Schoolers and Beyond

UPDATE: SEE THE NEW VIDEO BELOW EXPLAINING THE PROBLEMS IN THIS POST. PLS SUBSCRIBE TO THE NEW MathNotationsVids Channel and share your comments and ratings!




The following video is available on my new MathNotations Videos Channe l.


This particular video is a 10 minute discussion of developing the Multiplication Principle of Counting. It is designed more for the instructor than the student although it may be helpful in clarifying this important concept. The focus is on using multiple representations to reach the widest variety of learning styles. It is appropriate for any teacher of mathematics but particularly for the middle school teacher or those who work with students who struggle with math concepts.


After watching the video (or skip it if you wish) scroll down to the two problems below. These are more sophisticated than the one in the video and they require application of other concepts as well. I believe they are appropriate for 8th graders through high school. A full investigation with questions is provided for each problem. Feel free to edit them to your own tastes or as needed for your students.

[埋込みオブジェクト:http://www.youtube.com/v/IAhJHV-qmlM&hl=en_US&fs=1&rel=0]



Problem I

Mr. M told his Period I 8th grade math class about the following imaginary scenario...

Before the first day of school, Mr. Serling noticed that the names of the 26 students in his 1st period class had an unusual property. All of their initials (First Initial, Last Initial) came from the letters A, B, C, D and E. Furthermore, some had duplicate initials like B.B.

Part (a)
He now asked his actual class to make a conjecture:

Do you think it's possible that all 26 students in this imaginary class could have different initials (from each other)? Write down your "initial" prediction (Y or N) on a slip of paper and fold it over.

Part (b) Ok, now that you've made a conjecture, get into your learning groups of 4 and individually make a list of all possible sets of initials using the letters A, B, C, D and E with repetitions like "B.B." allowed as I explained before. Make sure your lists agree - edit as needed. Are your lists easy to compare? Why or why not?

HOW MANY DIFFERENT SETS OF INITIALS DID YOUR GROUP AGREE ON? ________

Part (c) Show your predictions to your partners and, in pairs, explain your reasoning why you would stay with your original prediction or change. Then write your reasoning as follows:

I believe that it is/is not possible for the 26 students to have different initials because ___________________________________.


At this point, Mr. M reviewed the Multiplication Principle of Counting (see the video above).

---------------------------------------------------------------------------------------------------------------------------


The following problem may be assigned for classwork or homework after Problem I has been discussed in class. You could also use it as an assessment.


Problem II
Mr. M decides to assign to each student in his 5 classes a unique code consisting of up to 5 colors in sequence. He has a total of 129 students and the codes will use only the colors Red, Yellow, Green, Blue and Purple. Mr. M explains that codes may have repeated colors (like GGG or GYG) and RYG is a different code from YGR.

Will Mr. M run out of different codes for his 129 students? Explain your answer carefully, using a method similar to Problem I.

Comment: I haven't mentioned how the Pigeonhole Principle can be applied to these two problems. I'll leave it to my astute readers to comment on that!




Ok, here's another video explaining the two problems above. I hope you will subscribe to my new channel on YouTube, MathNotationsVids .


[埋込みオブジェクト:http://www.youtube.com/v/9_P_wyk7N4M&hl=en_US&fs=1&rel=0]
--------------------------------------------------------------------------------------------------------------------------

Note: I've been asked why I'm using these signatures on my posts, particularly the 2nd one. Well...
"It's my party and I'll try what I want to!"
(Apologies to Lesley!)

I'm sure some of my devoted readers can figure out why I included Schopenhauer's quote and the 2nd one is really all about education, isn't it?


"All Truth passes through Three Stages: First, it is Ridiculed...
Second, it is Violently Opposed...
Third, it is Accepted as being Self-Evident."
- Arthur Schopenhauer (1778-1860)

You've got to be taught
To hate and fear,
You've got to be taught
From year to year,
It's got to be drummed
In your dear little ear
You've got to be carefully taught.
--from South Pacific


Thursday, January 22, 2009

A Presidential Contest Digit Problem: Fours are Wild!

With MathNotation's First Math Contest less than two weeks away (look here for details), I wanted to provide another sample contest question (multi-part). By the way, we now have several middle schools, high schools and even homeschool teams registered from all overv the country! It takes only a few minutes to register and there's still time!
--------------------------------------------------------------------------------------------------------
For President Obama, the number four has special significance. The most obvious is that he's the 44th president. You can ask your students to think of several other connections between our new president and the number four. But for now, we will focus on 44...

(a) Since 44 = 2^5 + 2^3 + 2^2, 44 equals 101100 in base 2 (binary representation).
Let S be the set of all base-10 numbers (positive integers) whose binary representation consists of six digits, exactly three of which are 1's. Find the sum of these base-10 numbers to reveal part of the mystery behind the title of this post!
Note that the leftmost binary digit must be "1".

Comment: This is a fairly straightforward 'counting' problem accessible to middle schoolers as well as older students. One could simply make a list of the numbers and add them. However, there's a more systematic way to count the 'combinations' and a "different" way of adding here that may help you solve the next problem. Can you find it?

(b) Consider the set of all base-10 numbers (positive integers) whose binary representation consists of ten digits, exactly three of which are 1's. Show that the sum of these base-10 numbers can be written 44(2^9) - 4 - 4. "Fours are wild!"

Note: This seems like a tedious generalization of Part I, but, again, if you find the right way to count and add it won't take long!

BTW, if you're wondering how I came to find all these 4's, well, it might have been serendipity. After all, serendipity has 11 letters and 11 is a factor of 44 and... (Twilight Zone music playing in the background...). Also, if you're wondering what my outside sources for these kinds of problems are, do you really think there's anyone else out there whose mind could be this warped!

Sunday, August 24, 2008

2008 has 2 digits that are the same -- A Probability Investigation For Middle Schoolers And Beyond

As the school year is beginning...

Which would you conjecture is more likely:

No digits the same in a 3-digit number or no digits the same in a 2-digit number?


You have 30 seconds to choose one of these - - - - - - - - - -
NOW WRITE YOUR GUESS ON YOUR PAPER and compare with your partner. Take one minute to discuss your thoughts...

Alright, I know some of you take exception to wasting these 30 seconds. What could be gained from such 'blind' guessing without the time to really think it through and work it out. I often used device this to encourage youngsters to react instinctively and to learn to trust their intuition. How many times have all of us had the experience of not trusting ourselves, only to find later that we were right. If it turns out that this gut reaction is not supported by the data, then the mathematical researcher (or the experimental mathematician in this case) revises the hypothesis. Ultimately, one attempts to validate one's conjectures via logic (deduction, induction, etc.). If you're still not convinced this is worthwhile, it's only a suggestion...

Now we're past the prelims. Our goal is to have our students begin with solving a particular case of the problem above and then to develop a general relationship for:
The probability that an N-digit positive integer will have N different digits. Of course, N is restricted to be in the range 1..10. We would hope our students from middle school on would recognize that the probability for N = 1 is 100%, whereas the probability for N = 11,12,13,... would be zero! Yes, we would hope!

(1) Show that the probability a 2-digit positive integer has different digits is 90%.
Comments: This is a well-known and fairly basic problem, but this is just the jumping-off point for this investigation. Various methods are likely here, depending on the background of the student. The middle school student (and many secondary as well) would likely list or count the number of 2-digit numbers with different digits. Some would realize that it might be easier to count those with identical digits and subtract from the total. More advanced students may use more sophisticated approaches for this and the other parts below. One could use this activity to develop the multiplication principle, permutations, use of factorials, etc. However, there is much to be gained from 'first principles.' Careful counting and making an organized list never go out of style!

(2) Show that the probability a 3-digit positive integer has 3 different digits is 72%.

(3) Complete the following table up to N = 10:
Note: P(N...) denotes the probability of the indicated outcome.

Number of Digits N.....P(N different digits)

...........1......................100% or 1
...........2..................... 90% or 0.9
...........3......................72% or 0.72
...........4......................50.4% or 0.504......
.
.
..........10.....................................................


(4) Time to revisit your original conjecture.... Explain why the probabilities decrease as the number of digits increase.
Note: One could give a purely descriptive explanation here.

(5) For more advanced groups:
Develop a formula for P(N).

(6) For more advanced groups:
Enter your expression from (4) into Y1 of the Y= menu in your graphing calculator. Set up a TABLE with Start value of 1, increment (Δ) = 1 and Auto for Indpnt and Depend. Display your table and check the values you found from your own table.

(7) [Optional]
Closure: Write 3 ideas, methods, strategies, mathematical principles, etc., you have learned from this activity.

Sunday, June 29, 2008

Probability and Counting Challenge -- You'll Need To Sit Down for This One

Five people with first initials A, B, C, D and E were seated randomly in a row in a movie theater with no spaces between them. What is the probability that A, B and C were adjacent to each other in some order? (For example: "DBACE")

A potential SAT problem or is it a level above? A math contest problem or not difficult enough? More importantly, how much experience do most of our students have with these kinds of combinatorial problems? I know that some of our educators who visit here do these with their classes, but is it the norm? My feeling is that students need to see many of these developed over time in more than one course.

What method (s) do you consider the most effective for solving these kinds of problems? For teaching? Are these 2 questions really the same?

After this question is discussed with the class, how does the instructor assess the learning? Give them another one to try immediately or give a worksheet of these (if the text does not provide enough practice)? How could one raise the bar even higher?


Suggested Extension #1: This time we have 10 people seated randomly in a row (no spaces). What is the probability that 4 of them, say A. B, C and D, would be adjacent to each other?

Suggested Extension #2: N people seated randomly in a row (no spaces). What is the probability that a particular subset of M of these people would be adjacent to each other?

Your thoughts...

Sunday, April 13, 2008

1,2,2,3,3,3,4,4,4,4,... What is the 2008th term? SAT-type Questions vs. Math Contest Problems

Don't forget to submit the name of our Mystery Mathematician. Contest ends around 4-15-08. Thus far, only one correct submission (emailed of course!).

The problem in the title is the math contest version. Knowing the formula for the nth triangular number would be helpful (so might a calculator). Do all middle school and hs students become familiar with triangular and other figurate numbers? Should they? My vote: Yes!


The SAT -type would be:


What is the 56th term of the sequence 1,2,2,3,3,3,4,4,4,4,..., in which each positive integer N occurs N times?

Comment: This is considerably easier than the contest problem as one could do it by listing with or without a calculator. It also may reveal your strong number sense students who will see the idea fairly rapidly. Try it as a warm-up in class!

Another SAT-type (probability, counting) to help students prepare for the May Exam:

Let S be the set of all 3-digit positive integers whose middle digit is zero. If a number is chosen at random from S, what is the probability that the sum of its digits is even?

Note: I wrote this question to demonstrate basic principles of probability and counting. Although one could use the Multiplication Principle (aka, Fundamental Principle of Counting), students should also be encouraged to make an organized list and, by grouping, see why the answer is 1/2.






Monday, July 2, 2007

The Multiplication Principle - Developing SAT/Math Contest Skills

How many even 4-digit positive integers greater than 6000 are multiples of 5?

Students who have had many experiences with problems like this have a huge advantage on Math Contests and SATs. To level the playing field, you might want to consider giving your middle and secondary students a daily SAT/Math Contest Problem of the Day like the one above. Questions like this require:
(a) Careful reading skills (encourage underlining or circling of keywords
(b) Knowledge of the Fundamental Principle of Counting (most often termed the Multiplication Principle)
(c) Clear thinking
(d) Careful reasoning

The answer is 399 (pls correct this if you feel I erred!). The process is equally important. Students should be encouraged to list a few examples (preferably the first 2-3) of numbers satisfying the conditions. The challenge is to recognize HOW MANY conditions are subtly embedded in the dozen or so words in the question ! Some students will prefer to make an organized list and count by grouping, which is fine, but, as they develop, they should recognize that is the basis for the Multiplication Principle (and later on, permutations).

Sunday, February 25, 2007

SAT-Type Challenge: Exponents and Combinatorial Thinking

These SAT-type questions provide review for the multiplication rule of exponents as well as recognizing the need for using the counting principle vs. careful enumeration in an organized list. Both questions need to be given for the effect. Target: PreAlgebra and beyond...

(a) Consider the list 1,2,3,4,5
If a, b and c are assigned different values from the list above, how many different values will result from the expression abc ?

(b) Consider the list 1,2,4,8,16
If a, b and c are assigned different values from the list above, how many different values will result from the expression abc ?



Notes:
(i) To encourage use of exponent rules, do not allow calculator. What variations would make this even more powerful?
(ii) Possible extension: For (a), ask students to make a conjecture regarding the largest possible power, i.e., is it obvious which is the greatest among 512, 415, and 320 ?

Subscribe to: Comments (Atom)

AltStyle によって変換されたページ (->オリジナル) /