Dijkstra, Miller-Rabin and Caching

This problem requires Dijkstra since it is a Breadth-First Search (BFS) but you always want to dequeue the element with the smallest path-sum first, hence instead of using a queue you'll need to use a priority queue. It also has a twist that it requires you to check for prime numbers along the way. My favorite method (although overkill here) is Miller-Rabin, but even Miller-Rabin leads to Time Limit Exceeded (TLE) hence you'll need to combine it with global caching. HashSet performs better than HashTable from my observation. Even with all that in place, it was still leading to TLE. Reducing the size of the priority queue from 20K to 10K did the trick. Code is down below. Greetings from the Big Island!! ACC.

Digit Operations to Make Two Integers Equal - LeetCode

You are given two integers n and m that consist of the same number of digits.

You can perform the following operations any number of times:

  • Choose any digit from n that is not 9 and increase it by 1.
  • Choose any digit from n that is not 0 and decrease it by 1.

The integer n must not be a prime number at any point, including its original value and after each operation.

The cost of a transformation is the sum of all values that n takes throughout the operations performed.

Return the minimum cost to transform n into m. If it is impossible, return -1.

Example 1:

Input: n = 10, m = 12

Output: 85

Explanation:

We perform the following operations:

  • Increase the first digit, now n = 20.
  • Increase the second digit, now n = 21.
  • Increase the second digit, now n = 22.
  • Decrease the first digit, now n = 12.

Example 2:

Input: n = 4, m = 8

Output: -1

Explanation:

It is impossible to make n equal to m.

Example 3:

Input: n = 6, m = 2

Output: -1

Explanation:

Since 2 is already a prime, we can't make n equal to m.

Constraints:

  • 1 <= n, m < 104
  • n and m consist of the same number of digits.
public class Solution {
 public static HashSet millerRabinCache = new HashSet();
 public int MinOperations(int n, int m)
 {
 if (IsPrimeMillerRabin(n)) return -1;
 PriorityQueue pQueue = new PriorityQueue(true, 10000);
 HashSet visited = new HashSet();
 NumberAndSumPath node = new NumberAndSumPath(n, n);
 pQueue.Enqueue(node, node.sumPath);
 visited.Add(n);
 while (pQueue.Count > 0)
 {
 double tempPriority = 0;
 NumberAndSumPath current = (NumberAndSumPath)pQueue.Dequeue(out tempPriority);
 if (current.number == m)
 {
 return current.sumPath;
 }
 StringBuilder str = new StringBuilder(current.number.ToString());
 //Decrease
 for (int i = 0; i < str.Length; i++)
 {
 if (str[i] != '0')
 {
 char temp = str[i];
 str[i] = (char)((int)str[i] - 1);
 int nTemp = Int32.Parse(str.ToString());
 if (!visited.Contains(nTemp) && !IsPrimeMillerRabin(nTemp))
 {
 NumberAndSumPath newNode = new NumberAndSumPath(nTemp, nTemp + current.sumPath);
 pQueue.Enqueue(newNode, newNode.sumPath);
 visited.Add(nTemp);
 }
 str[i] = temp;
 }
 }
 //Increase
 for (int i = str.Length - 1; i >= 0; i--)
 {
 if (str[i] != '9')
 {
 char temp = str[i];
 str[i] = (char)((int)str[i] + 1);
 int nTemp = Int32.Parse(str.ToString());
 if (!visited.Contains(nTemp) && !IsPrimeMillerRabin(nTemp))
 {
 NumberAndSumPath newNode = new NumberAndSumPath(nTemp, nTemp + current.sumPath);
 pQueue.Enqueue(newNode, newNode.sumPath);
 visited.Add(nTemp);
 }
 str[i] = temp;
 }
 }
 }
 return -1;
 }
 public class NumberAndSumPath
 {
 public int number;
 public int sumPath;
 public NumberAndSumPath(int number, int sumPath)
 {
 this.number = number;
 this.sumPath = sumPath;
 }
 }
 public bool IsPrimeMillerRabin(BigInteger n)
 {
 if (millerRabinCache.Contains(n)) return true;
 //It does not work well for smaller numbers, hence this check
 int SMALL_NUMBER = 1000;
 if (n <= SMALL_NUMBER)
 {
 bool val = IsPrime(n);
 if (val) millerRabinCache.Add(n);
 return val;
 }
 int MAX_WITNESS = 100;
 for (long i = 2; i <= MAX_WITNESS; i++)
 {
 if (IsPrime(i) && Witness(i, n) == 1)
 {
 return false;
 }
 }
 millerRabinCache.Add(n);
 return true;
 }
 public BigInteger SqRtN(BigInteger N)
 {
 /*++
 * Using Newton Raphson method we calculate the
 * square root (N/g + g)/2
 */
 BigInteger rootN = N;
 int count = 0;
 int bitLength = 1;
 while (rootN / 2 != 0)
 {
 rootN /= 2;
 bitLength++;
 }
 bitLength = (bitLength + 1) / 2;
 rootN = N >> bitLength;
 BigInteger lastRoot = BigInteger.Zero;
 do
 {
 if (lastRoot > rootN)
 {
 if (count++ > 1000) // Work around for the bug where it gets into an infinite loop
 {
 return rootN;
 }
 }
 lastRoot = rootN;
 rootN = (BigInteger.Divide(N, rootN) + rootN) >> 1;
 }
 while (!((rootN ^ lastRoot).ToString() == "0"));
 return rootN;
 }
 public bool IsPrime(BigInteger n)
 {
 if (n <= 1)
 {
 return false;
 }
 if (n == 2)
 {
 return true;
 }
 if (n % 2 == 0)
 {
 return false;
 }
 for (int i = 3; i <= SqRtN(n) + 1; i += 2)
 {
 if (n % i == 0)
 {
 return false;
 }
 }
 return true;
 }
 private int Witness(long a, BigInteger n)
 {
 BigInteger t, u;
 BigInteger prev, curr = 0;
 BigInteger i;
 BigInteger lln = n;
 u = n / 2;
 t = 1;
 while (u % 2 == 0)
 {
 u /= 2;
 t++;
 }
 prev = BigInteger.ModPow(a, u, n);
 for (i = 1; i <= t; i++)
 {
 curr = BigInteger.ModPow(prev, 2, lln);
 if ((curr == 1) && (prev != 1) && (prev != lln - 1)) return 1;
 prev = curr;
 }
 if (curr != 1) return 1;
 return 0;
 }
}
public class PriorityQueue
{
 public struct HeapEntry
 {
 private object item;
 private double priority;
 public HeapEntry(object item, double priority)
 {
 this.item = item;
 this.priority = priority;
 }
 public object Item
 {
 get
 {
 return item;
 }
 }
 public double Priority
 {
 get
 {
 return priority;
 }
 }
 }
 private bool ascend;
 private int count;
 private int capacity;
 private HeapEntry[] heap;
 public int Count
 {
 get
 {
 return this.count;
 }
 }
 public PriorityQueue(bool ascend, int cap = -1)
 {
 capacity = 10000000;
 if (cap > 0) capacity = cap;
 heap = new HeapEntry[capacity];
 this.ascend = ascend;
 }
 public object Dequeue(out double priority)
 {
 priority = heap[0].Priority;
 object result = heap[0].Item;
 count--;
 trickleDown(0, heap[count]);
 return result;
 }
 public object Peak(out double priority)
 {
 priority = heap[0].Priority;
 object result = heap[0].Item;
 return result;
 }
 public object Peak(/*out double priority*/)
 {
 //priority = heap[0].Priority;
 object result = heap[0].Item;
 return result;
 }
 public void Enqueue(object item, double priority)
 {
 count++;
 bubbleUp(count - 1, new HeapEntry(item, priority));
 }
 private void bubbleUp(int index, HeapEntry he)
 {
 int parent = (index - 1) / 2;
 // note: (index > 0) means there is a parent
 if (this.ascend)
 {
 while ((index > 0) && (heap[parent].Priority > he.Priority))
 {
 heap[index] = heap[parent];
 index = parent;
 parent = (index - 1) / 2;
 }
 heap[index] = he;
 }
 else
 {
 while ((index > 0) && (heap[parent].Priority < he.Priority))
 {
 heap[index] = heap[parent];
 index = parent;
 parent = (index - 1) / 2;
 }
 heap[index] = he;
 }
 }
 public int SmallestNumber(int n, int t)
 {
 for (int k = n; ; k++)
 {
 long p = 1;
 int temp = k;
 while (temp > 0)
 {
 p *= (temp % 10);
 temp /= 10;
 }
 if (p % t == 0) return k;
 }
 }
 public int CountKConstraintSubstrings(string s, int k)
 {
 int retVal = 0;
 for (int i = 0; i < s.Length; i++)
 {
 int zeroes = 0;
 int ones = 0;
 for (int j = i; j < s.Length; j++)
 {
 if (s[j] == '0') zeroes++;
 else ones++;
 if (zeroes > k && ones > k) break;
 retVal++;
 }
 }
 return retVal;
 }
 private void trickleDown(int index, HeapEntry he)
 {
 int child = (index * 2) + 1;
 while (child < count)
 {
 if (this.ascend)
 {
 if (((child + 1) < count) &&
 (heap[child].Priority > heap[child + 1].Priority))
 {
 child++;
 }
 }
 else
 {
 if (((child + 1) < count) &&
 (heap[child].Priority < heap[child + 1].Priority))
 {
 child++;
 }
 }
 heap[index] = heap[child];
 index = child;
 child = (index * 2) + 1;
 }
 bubbleUp(index, he);
 }
}



Comments

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...