Iterator for a Binary Tree (in C#)

For more that I'm falling in love with Python, C# still has a special place in my heart :)

This problem (LC, medium) asks to create an iterator for a Binary Tree, here it is: https://leetcode.com/problems/binary-search-tree-iterator-ii/

1586. Binary Search Tree Iterator II
Medium

Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):

  • BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
  • boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
  • int next() Moves the pointer to the right, then returns the number at the pointer.
  • boolean hasPrev() Returns true if there exists a number in the traversal to the left of the pointer, otherwise returns false.
  • int prev() Moves the pointer to the left, then returns the number at the pointer.

Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.

You may assume that next() and prev() calls will always be valid. That is, there will be at least a next/previous number in the in-order traversal when next()/prev() is called.

Follow up: Could you solve the problem without precalculating the values of the tree?

Example 1:

Input
["BSTIterator", "next", "next", "prev", "next", "hasNext", "next", "next", "next", "hasNext", "hasPrev", "prev", "prev"]
[[[7, 3, 15, null, null, 9, 20]], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null]]
Output
[null, 3, 7, 3, 7, true, 9, 15, 20, false, true, 15, 9]
Explanation
// The underlined element is where the pointer currently is.
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); // state is [3, 7, 9, 15, 20]
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 3
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 7
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 3
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 7
bSTIterator.hasNext(); // return true
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 9
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 15
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 20
bSTIterator.hasNext(); // return false
bSTIterator.hasPrev(); // return true
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 15
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 9

Constraints:

  • The number of nodes in the tree is in the range [1, 105].
  • 0 <= Node.val <= 106
  • At most 105 calls will be made to hasNext, next, hasPrev, and prev.
Accepted
253
Submissions
384

Easiest way, given that the boundaries are small (10^5), is to convert the tree to an array and just play with the indexation. Moving the tree to an array using In-Order traversal is actually very trivial - you can see the code below. Works fast - cheers, ACC.

public class BSTIterator
{
 private int[] treeInArray = null;
 private int currentIndex = 0;
 public BSTIterator(TreeNode root)
 {
 List list = new List();
 PopulateArray(root, list);
 treeInArray = list.ToArray();
 currentIndex = -1;
 }
 public bool HasNext()
 {
 return currentIndex < treeInArray.Length - 1; } public int Next() { return treeInArray[++currentIndex]; } public bool HasPrev() { return currentIndex> 0;
 }
 public int Prev()
 {
 return treeInArray[--currentIndex];
 }
 private void PopulateArray(TreeNode node, List list)
 {
 if (node == null) return;
 if (node.left != null)
 {
 PopulateArray(node.left, list);
 }
 list.Add(node.val);
 if (node.right != null)
 {
 PopulateArray(node.right, list);
 }
 }
}

Comments

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...