Falling in love with Python...

Looks like the Python "snake" bit me pretty good. I get the same vibe when I first learned C#, that feeling of simplicity, readability and completeness. Not everything is perfect though, IMO: the indentation structure reminds me of Fortran (wow), I still lack to properly define variables instead of them appearing out of the blue (with no explicit type), and I must say that the support from VS to Python is not as good as the support to C# for example (it ain't bad but not optimal).

Here is a medium-level LC problem that can be solved in O(n)-time: https://leetcode.com/problems/minimum-deletion-cost-to-avoid-repeating-letters/

1578. Minimum Deletion Cost to Avoid Repeating Letters
Medium

Given a string s and an array of integers cost where cost[i] is the cost of deleting the ith character in s.

Return the minimum cost of deletions such that there are no two identical letters next to each other.

Notice that you will delete the chosen characters at the same time, in other words, after deleting a character, the costs of deleting other characters will not change.

Example 1:

Input: s = "abaac", cost = [1,2,3,4,5]
Output: 3
Explanation: Delete the letter "a" with cost 3 to get "abac" (String without two identical letters next to each other).

Example 2:

Input: s = "abc", cost = [1,2,3]
Output: 0
Explanation: You don't need to delete any character because there are no identical letters next to each other.

Example 3:

Input: s = "aabaa", cost = [1,2,3,4,1]
Output: 2
Explanation: Delete the first and the last character, getting the string ("aba").

Constraints:

  • s.length == cost.length
  • 1 <= s.length, cost.length <= 10^5
  • 1 <= cost[i] <= 10^4
  • s contains only lowercase English letters.
Accepted
9,222
Submissions
15,475

Basically the gist is to do a linear pass, and any block of contiguous characters you keep track of the total cost, and the max cost, and at the end, add to the return value the total cost minus the max cost. Code is below, cheers, ACC.


def minCost(self, s, cost):
 """
 :type s: str
 :type cost: List[int]
 :rtype: int
 """
 retVal = 0
 index = 0
 while index < len(s): maxVal = cost[index] anchor = s[index] partialCost = cost[index] while index+1 < len(s) and s[index+1] == anchor: index += 1 partialCost += cost[index] maxVal = max(maxVal, cost[index]) partialCost -= maxVal retVal += partialCost index += 1 return retVal 

Comments

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...