ISGCI logo
Information System on Graph Classes and their Inclusions
Find class
Global
ISGCI home
Java
All classes
References
Smallgraphs
✉
This problem
Linear
Polynomial
GI-complete
NP-hard
NP-complete
coNP-complete
Open
Unknown
Problem: cliquewidth decomposition
Definition:
Input: A graph
G
in this class.
Output: An expression that constructs
G
according to the rules for cliquewidth, using only a constant number of labels.
Undefined if this class has unbounded cliquewidth.
Linear
(0,2)-colorable ∩ chordal
1-bounded bipartite
(2,0)-colorable ∩ chordal
2-leaf power
(2C
4
,3K
2
,C
6
,E,P
2
∪ P
4
,P
6
,X
25
,X
26
,X
27
,X
28
,X
29
,odd-cycle)-free
2K
1
-free
(2K
2
,3K
1
,C
4
,P
4
)-free
(2K
2
,3K
1
,P
3
)-free
(2K
2
,C
4
,C
5
,S
3
,claw,net)-free
(2K
2
,C
4
,C
5
,S
3
,co-claw,net)-free
(2K
2
,C
4
,C
5
,claw,diamond)-free
(2K
2
,C
4
,C
5
,co-claw,co-diamond)-free
(2K
2
,C
4
,P
4
,triangle)-free
(2K
2
,C
4
,P
4
)-free
(2K
2
,C
5
,triangle)-free
(2K
2
,K
3,3
,K
3,3
+e,P
4
,
2P
3
)-free
(2K
2
,P
3
,triangle)-free
(2K
2
,P
3
)-free
(2K
2
,P
4
,
2P
3
)-free
(2K
2
,P
4
,co-dart)-free
(2K
2
,P
4
,co-diamond,co-paw)-free
(2K
2
,P
4
)-free
2K
2
-free ∩ bipartite
(2K
3
+ e,A,C
5
,C
6
,E,H,K
3,3
-e,P
6
,R,S
3
,X
166
,X
167
,X
168
,X
169
,X
170
,X
171
,X
172
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,X
96
,X
98
,
A
,
C
6
,
E
,
H
,
P
6
,
R
,
X
166
,
X
167
,
X
168
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
96
,
X
98
,antenna,co-antenna,co-cross,co-domino,co-fish,co-twin-house,cross,domino,fish,net,twin-house)-free
(2K
3
,2P
3
,C
4
,K
3
∪ P
3
,P
4
)-free
(2P
3
,C
4
,P
4
)-free
(2P
3
,P
4
)-free
3-leaf power
(3K
1
,C
4
,C
5
)-free
(3K
1
,C
4
,
P
3
)-free
(3K
1
,C
5
,butterfly,diamond)-free
(3K
1
,P
3
)-free
(3K
1
,P
4
)-free
(3K
1
,
P
3
)-free
(3K
1
,co-fork)-free
(3K
1
,house)-free
(3K
1
,paw)-free
(3K
2
,C
5
,P
2
∪ P
4
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
,net)-free
(4K
1
,K
4
)-free
(4K
1
,P
4
)-free
(5,1)
(5,2)-crossing-chordal
5-leaf power ∩ distance-hereditary
(6,2)
(6,2)-chordal ∩ bipartite
(7,3)
(7,4)
(8,4)
(9,6)
AC
(C
4
,P
4
,dart)-free
(C
4
,P
4
,diamond,paw)-free
(C
4
,P
4
)-free
(C
4
,
P
3
,triangle)-free
(C
4
,
P
3
)-free
(C
5
,C
6
,P
6
,triangle)-free
(C
5
,K
2
∪ K
3
,K
2,3
,P,P
2
∪ P
3
,P
5
,
P
,
P
2
∪ P
3
,co-fork,fork,house)-free
(C
5
,P,P
5
,S
3
,
P
,co-fork,fork,house,net)-free
(C
5
,P,P
5
,
P
,co-fork,fork,house)-free
(C
5
,S
3
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
3K
2
,
P
2
∪ P
4
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
(C
5
,S
3
,
3K
2
,
P
2
∪ P
4
)-free ∩ P
4
-tidy
(C
5
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
(C
5
,co-butterfly,co-diamond,triangle)-free
C
5
-free ∩ P
4
-extendible
C
5
-free ∩ P
4
-tidy
C
5
-free ∩ matrogenic
(C
n+4
,P
5
,bull)-free
(C
n+4
,P
5
,claw,gem)-free
(C
n+4
,X
102
,X
204
,
P
3
∪ 2K
1
,gem)-free
(C
n+4
,
K
3
∪ 3K
1
,dart,gem)-free
(C
n+4
,bull,dart,gem)-free
(C
n+4
,claw,gem)-free
(C
n+4
,dart,gem)-free
(C
n+4
,diamond)-free
(C
n+4
,gem)-free
Dilworth 1
HHDG-free
(K
2
∪ K
3
,P
4
,butterfly)-free
(K
2
∪ K
3
,
P
,
X
163
,
X
95
,co-diamond,house)-free
(K
2,3
,P,P
5
,X
163
,X
95
,diamond)-free
(K
2,3
,P
4
,co-butterfly)-free
K
2
-free
K
3
-minor-free
(K
4
,P
4
)-free
NLCT-width 1
(P,P
5
,S
3
,
P
,co-fork,fork,house,net)-free
(P,P
5
,
P
,co-fork,fork,house)-free
(P,
P
,co-fork,fork)-free
(P
3
,triangle)-free
P
3
-free
(P
4
,
2P
3
)-free
(P
4
,co-cycle)-free
(P
4
,co-diamond,co-paw)-free
(P
4
,cycle)-free
(P
4
,diamond,paw)-free
(P
4
,triangle)-free
P
4
-extendible
P
4
-extendible ∩ P
4
-sparse
P
4
-free
P
4
-free ∩ starlike
P
4
-lite
P
4
-reducible
P
4
-sparse
P
4
-tidy
P
4
-tidy ∩ (S
3
,
3K
2
,
E
,
P
2
∪ P
4
,odd anti-hole,odd-hole)-free
P
4
-tidy ∩ balanced
P
4
-tidy ∩ hereditary clique-Helly ∩ perfect
P
4
-tidy ∩ perfect
(P
5
,bull,house)-free
(P
5
,bull)-free ∩ interval
(P
5
,co-fork,house)-free
(P
5
,diamond)-free
(P
5
,fork,house)-free
(P
5
,triangle)-free
P
6
-free ∩ chordal bipartite
(P
7
,odd-cycle,star
1,2,3
,sunlet
4
)-free
(P
7
,odd-cycle,star
1,2,3
)-free
(S
3
,net)-free ∩ extended P
4
-sparse
(T
2
,cycle)-free
(T
3
,X
81
,cycle)-free
(T
3
,cycle)-free
(XC
12
,cycle)-free
XC
9
-free
(XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
(
C
n+4
,bull,house)-free
(
C
n+4
,co-claw,co-gem,house)-free
(
P
,butterfly,fork,gem)-free
(
P
,fork,gem)-free
(
P
,fork,house)-free
(
P
3
,triangle)-free
P
3
-free
bi-cograph
binary tree
binary tree ∩ partial grid
bipartite ∩ bithreshold
bipartite ∩ bridged
bipartite ∩ claw-free
bipartite ∩ distance-hereditary
bipartite ∩ module-composed
bipartite chain
block
block duplicate
(bull,co-fork,fork)-free
(bull,fork,gem)-free
(bull,fork,house)-free
caterpillar
chordal ∩ cograph
chordal ∩ diamond-free
chordal ∩ distance-hereditary
chordal ∩ domino
chordal ∩ gem-free
chordal ∩ probe diamond-free
circular arc ∩ cograph
(claw,co-claw)-free
(claw,odd-cycle)-free
(claw,paw)-free
cliquewidth 2
cluster
(co-claw,co-paw)-free
(co-claw,odd anti-cycle)-free
co-cluster
(co-diamond,diamond)-free
(co-fork,odd anti-cycle)-free
co-interval ∩ cograph
co-interval ∩ cograph ∩ interval
(co-paw,paw)-free
(co-paw,triangle)-free
co-trivially perfect
co-trivially perfect ∩ trivially perfect
cograph
cograph ∩ interval
cograph ∩ split
comparability ∩ distance-hereditary
comparability graphs of arborescence orders
comparability graphs of series-parallel posets
comparability graphs of threshold orders
complete
complete bipartite
complete multipartite
complete split
cycle-free
difference
disjoint union of stars
distance-hereditary
(domino,gem,hole,house,net)-free
(domino,gem,house)-free ∩ pseudo-modular
(domino,hole,odd-cycle)-free
domino-free ∩ modular
domishold
extended P
4
-reducible
extended P
4
-sparse
(fork,odd-cycle)-free
(fork,triangle)-free
half
homogeneously representable
independent module-composed
indifference ∩ split
intersection graph of nested intervals
line graphs of acyclic multigraphs
linear NLC-width 1
linear cliquewidth 2
lobster
matrogenic
matroidal
maximum degree 1
minimally imperfect
partner-limited
probe block
probe complete
probe interval ∩ tree
ptolemaic
ptolemaic ∩ weakly geodetic
(q, q-3), fixed q>= 7
(q,q-4), fixed q
quasi-threshold
restricted block duplicate
semi-P
4
-sparse
semicircular
starlike threshold
strictly chordal
superfragile
thick tree
threshold
tolerance ∩ tree
tree
trivially perfect
back to top
Polynomial
(0,3)-colorable ∩ chordal
2-bounded bipartite
2-outerplanar
2-terminal series-parallel
2-tree
2-tree ∩ probe interval
(2K
2
,C
4
,C
5
,H,S
3
,X
160
,
X
159
,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,X
159
,X
160
,
H
,co-rising sun,net)-free
(2K
2
,C
5
,S
3
,X
159
,X
160
,X
161
,X
162
,X
46
,X
70
,
2P
3
,
3K
2
,
H
,
P
2
∪ P
4
,
X
1
,co-rising sun,house,net)-free
2K
2
-free ∩ probe cograph
2K
2
-free ∩ probe trivially perfect
(2P
3
,3K
2
,C
4
,C
5
,H,P
2
∪ P
4
,P
5
,S
3
,X
1
,X
160
,
X
159
,
X
161
,
X
162
,
X
46
,
X
70
,net,rising sun)-free
3-tree
3-tree ∩ planar
(3K
1
,C
5
,K
5
- e,
C
6
∪ K
1
,
C
7
,
K
3,3
∪ K
1
,
K
3,3
-e ∪ K
1
,
domino ∪ K
1
)-free
(3K
1
,C
5
,
C
6
,
P
6
)-free
(3K
1
,
K
2
∪ claw
)-free
(3K
1
,
P
6
)-free
(3K
1
,
X
172
)-free
(3K
2
,C
6
,P
7
,X
164
,X
165
,odd-cycle,sunlet
4
)-free
(3K
2
,
P
,co-gem,house)-free
4-leaf power
(4K
1
,
C
n+4
)-free
5-leaf power
(A,T
2
,odd-cycle)-free
Apollonian network
(C
5
,C
6
∪ K
1
,C
7
,K
3,3
∪ K
1
,K
3,3
-e ∪ K
1
,
K
5
- e
,domino ∪ K
1
,triangle)-free
(C
5
,P
5
,gem)-free
(C
5
,bull,co-gem,gem)-free
(C
5
,co-gem,gem)-free
(C
5
,co-gem,house)-free
(C
n+4
,K
4
)-free
(E,odd-cycle)-free
E-free ∩ bipartite
Halin
(K
2
∪ claw,triangle)-free
(K
2,3
,K
4
)-minor-free
(K
3
∪ 3K
1
,
C
n+4
,co-dart,co-gem)-free
K
4
-minor-free
(K
5
,X
126
,X
174
,
3K
2
)-minor-free
(P,P
5
,
3K
2
,gem)-free
(P,P
5
,co-fork)-free
(P,co-butterfly,co-fork,co-gem)-free
(P,co-fork,co-gem)-free
(P,co-gem,house)-free
(P
3
∪ 2K
1
,
C
n+4
,
X
102
,
X
204
,co-gem)-free
(P
5
,S
3
,anti-hole,co-domino,co-gem)-free
(P
5
,
P
,gem)-free
(P
5
,anti-hole,co-domino,co-gem)-free
(P
5
,bull,co-fork)-free
(P
5
,gem)-free
(P
6
,triangle)-free
SC 2-tree
SC 3-tree
SC k-tree, fixed k
(X
172
,triangle)-free
(X
177
,odd-cycle)-free
(
2C
4
,
3K
2
,
C
6
,
E
,
P
2
∪ P
4
,
P
6
,
X
25
,
X
26
,
X
27
,
X
28
,
X
29
,odd anti-cycle)-free
(
3K
2
,
C
6
,
P
7
,
X
164
,
X
165
,
sunlet
4
,odd anti-cycle)-free
(
A
,
T
2
,odd anti-cycle)-free
(
C
n+4
,bull,co-dart,co-gem)-free
(
C
n+4
,co-claw,co-gem)-free
(
C
n+4
,co-dart,co-gem)-free
(
C
n+4
,co-diamond)-free
(
C
n+4
,co-gem)-free
(
E
,odd anti-cycle)-free
(
P
7
,
star
1,2,3
,
sunlet
4
,odd anti-cycle)-free
(
P
7
,
star
1,2,3
,odd anti-cycle)-free
(
T
2
,co-cycle)-free
(
T
3
,
X
81
,co-cycle)-free
(
T
3
,co-cycle)-free
(
X
177
,odd anti-cycle)-free
(
XC
12
,co-cycle)-free
(
claw ∪ 3K
1
,odd anti-cycle)-free
(
star
1,2,3
,
sunlet
4
,odd anti-cycle)-free
(
star
1,2,3
,odd anti-cycle)-free
almost tree (1)
(anti-hole,co-domino,odd anti-cycle)-free
(bull,co-fork,co-gem)-free
(bull,co-gem,gem)-free
cactus
chordal ∩ hamiltonian ∩ planar
chordal ∩ maximal planar
chordal ∩ planar
(claw ∪ 3K
1
,odd-cycle)-free
cliquewidth 3
cliquewidth 4
co-cycle-free
(co-diamond,house)-free
(co-gem,gem)-free
(co-gem,house)-free
co-probe cograph
co-probe threshold
k-outerplanar
k-path graph, fixed k
k-tree, fixed k
maximal outerplanar
(odd-cycle,star
1,2,3
,sunlet
4
)-free
(odd-cycle,star
1,2,3
)-free
outerplanar
partial 2-tree
partial 3-tree
partial 3-tree ∩ planar
partial 4-tree
partial k-tree, fixed k
probe P
4
-reducible
probe P
4
-sparse
probe bipartite chain
probe bipartite distance-hereditary
probe co-trivially perfect
probe co-trivially perfect ∩ probe trivially perfect
probe cograph
probe distance-hereditary
probe ptolemaic
probe threshold
probe threshold ∩ split
probe trivially perfect
series-parallel
strong tree-cograph
tree-cograph
treewidth 2
treewidth 3
treewidth 4
treewidth 5
unicyclic
back to top
GI-complete
back to top
NP-hard
back to top
NP-complete
back to top
coNP-complete
back to top
Open
back to top
Unknown to ISGCI
(0,2)-colorable
(0,2)-graph
(0,2)-graph ∩ bipartite
(0,3)-colorable
(1,1)-colorable
(1,2)-colorable
(1,2)-colorable ∩ chordal
(1,2)-polar
(1,2)-polar ∩ chordal
(1,2)-split
1-DIR
1-bounded tripartite
1-string
(2,0)-colorable
(2,2)-colorable
(2,2)-colorable ∩ chordal
(2,2)-interval
2-DIR
2-SEG
2-circular arc
2-circular track
2-connected
2-connected ∩ (4-fan,C
n+4
,K
5
- e,S
3
,
H
,
K
3
∪ 2K
1
)-free
2-connected ∩ (P
6
,claw)-free
2-connected ∩ cubic ∩ planar
2-connected ∩ linearly convex triangular grid graph
2-edge-connected
2-interval
2-split
2-split ∩ perfect
2-strongly regular
2-strongly regular ∩ planar
2-subdivision
2-subdivision ∩ planar
2-thin
2-threshold
2-track
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
,
H
,
K
1,4
,
X
85
)-free
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
,
H
,
X
85
)-free
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
)-free
(2K
2
,3K
1
)-free
(2K
2
,4K
1
,C
5
,co-diamond)-free
(2K
2
,4K
1
,co-claw,co-diamond)-free
(2K
2
,5K
1
,C
5
,K
3
∪ 2K
1
,P
3
∪ 2K
1
,
C
6
,
C
7
,
C
8
,
K
1,4
,
K
5
- e
,claw ∪ K
1
,co-butterfly,co-cricket,co-dart,co-gem)-free
(2K
2
,A,C
5
,
2P
3
,
X
170
,house)-free
(2K
2
,A,H)-free
(2K
2
,C
4
,C
5
,S
3
,co-rising sun,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,co-rising sun,net)-free
(2K
2
,C
4
,C
5
,S
3
,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,net)-free
(2K
2
,C
4
,C
5
,co-sun)-free
(2K
2
,C
4
,C
5
,sun)-free
(2K
2
,C
4
,C
5
)-free
(2K
2
,C
4
)-free
(2K
2
,C
5
,
C
6
,
C
7
,
C
8
,
XC
11
,co-claw,co-diamond)-free
(2K
2
,C
5
,
C
6
,
C
7
,
C
8
)-free
(2K
2
,C
5
,
C
6
,net)-free
(2K
2
,C
5
,
T
2
)-free
(2K
2
,C
5
)-free
(2K
2
,
2P
3
,
C
6
)-free
(2K
2
,
C
6
,
C
8
,
K
1,4
,odd anti-cycle)-free
(2K
2
,
C
6
,odd anti-cycle)-free
(2K
2
,
P
6
)-free
(2K
2
,
X
91
,co-claw)-free
(2K
2
,claw)-free
(2K
2
,co-claw,co-diamond)-free
(2K
2
,co-diamond)-free
(2K
2
,house)-free
(2K
2
,net)-free
(2K
2
,odd anti-hole)-free
2K
2
-free
(2K
3
+ e,3K
1
,C
5
,
T
2
,
X
18
,
X
94
,co-domino)-free
(2K
3
+ e,5-pan,A,C
6
,E,K
3,3
-e,P
6
,R,X
166
,X
167
,X
169
,X
170
,X
171
,X
172
,X
18
,X
37
,X
45
,X
5
,X
58
,X
84
,X
95
,X
98
,
5-pan
,
A
,
C
6
,
E
,
P
6
,
R
,
X
166
,
X
167
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
37
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
98
,antenna,co-antenna,co-domino,co-fish,co-twin-C
5
,co-twin-house,domino,fish,twin-C
5
,twin-house)-free
(2K
3
+ e,A,C
5
,C
6
,E,H,K
3,3
-e,R,X
168
,X
171
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,
A
,
C
6
,
E
,
H
,
R
,
X
168
,
X
171
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
(2K
3
+ e,A,C
5
,C
6
,E,K
3,3
-e,P
6
,R,X
166
,X
167
,X
169
,X
170
,X
171
,X
172
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,X
98
,
A
,
C
6
,
E
,
P
6
,
R
,
X
166
,
X
167
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
98
,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
(2K
3
+ e,C
5
,C
6
,P
6
,X
5
,
2P
4
,
A
,
C
6
,
C
7
,
E
,
P
7
,
R
,
X
1
,
X
103
,
X
5
,
X
58
,
X
84
,
X
98
,antenna,co-domino,co-rising sun,co-twin-house,domino,parachute,parapluie,rising sun,sunlet
4
)-free
(2K
3
+ e,
X
98
,house)-free
(2K
3
+ e,
X
99
,house)-free
(2K
3
+ e,house)-free
(2K
3
,2K
3
+ e,2P
3
,C
5
,C
6
,C
7
,K
2,3
,K
3
∪ P
3
,W
4
,X
84
,X
95
,
A
,
C
6
,
P
6
,
X
5
,
X
98
,butterfly,co-domino,co-fish,fish)-free
(2K
3
,2K
3
+ e,3K
1
,
A
,
H
,
T
2
,
X
18
,
X
45
,co-domino)-free
(2K
3
,2K
3
+ e,
A
,
H
,
X
45
,
XZ
5
,co-domino)-free
(2K
3
,2P
3
,C
5
,C
6
,C
7
,K
2,3
,K
3
∪ P
3
,X
84
,
3K
2
,
C
4
∪ P
2
,
C
6
,
P
2
∪ P
4
,
P
6
,
X
18
,
X
5
,co-antenna,co-domino,co-fish)-free
(2K
3
,2P
3
,C
n+4
,K
3
∪ P
3
)-free
(2K
3
,3K
1
,
A
,
H
,
X
45
)-free
(2K
3
,C
n+4
)-free
(2K
3
,X
42
,
A
,
H
,
X
45
,
X
46
,
X
47
,
X
48
,
X
49
,
X
50
,
X
51
,
X
52
,
X
53
,
X
54
,
X
55
,
X
56
,
X
57
)-free
(2K
3
,house)-free
(2K
4
,house)-free
(2P
3
,3K
2
,C
4
∪ P
2
,C
6
,K
2,3
,P
6
,X
130
,X
132
,X
134
,X
152
,X
153
,X
154
,X
155
,X
156
,X
157
,X
158
,X
18
,X
84
,
X
11
,
X
127
,
X
128
,
X
129
,
X
131
,
X
133
,
X
135
,
X
136
,
X
137
,
X
138
,
X
139
,
X
140
,
X
141
,
X
142
,
X
143
,
X
144
,
X
145
,
X
146
,
X
147
,
X
148
,
X
149
,
X
150
,
X
151
,
X
30
,
X
35
,
X
46
,co-XF
1
2n+3
,co-XF
6
2n+3
,co-antenna,co-eiffeltower,co-longhorn,domino,fish,odd anti-hole)-free
(2P
3
,C
4
,C
5
,P
5
,X
170
,
A
)-free
(2P
3
,C
4
,C
6
)-free
(2P
3
,triangle)-free
2P
3
-free
(2P
4
,A,C
5
,C
6
,C
7
,E,K
3,3
-e,P
7
,R,X
1
,X
103
,X
5
,X
58
,X
84
,X
98
,
C
6
,
P
6
,
X
5
,
sunlet
4
,co-antenna,co-domino,co-rising sun,domino,parachute,parapluie,rising sun,twin-house)-free
3-DIR
3-DIR contact
3-Helly
3-circular track
3-interval
3-mino
3-track
(3K
1
,C
5
,K
3
∪ K
4
,
BW
3
,
K
3,4
-e
,
T
2
,
X
18
,
X
92
,
X
93
)-free
(3K
1
,C
5
,
C
6
,
X
164
,
X
165
,
sunlet
4
)-free
(3K
1
,
2P
3
)-free
(3K
1
,
3K
2
)-free
(3K
1
,
C
6
)-free
(3K
1
,
E
)-free
(3K
1
,
H
)-free
(3K
1
,
K
1,5
)-free
(3K
1
,
P
2
∪ P
4
)-free
(3K
1
,
T
2
,
X
2
,
X
3
,anti-hole)-free
(3K
1
,
XC
12
)-free
(3K
1
,co-cross)-free
3K
1
-free
(3K
2
,A,C
4
∪ 2K
1
,E,P
2
∪ P
3
,R,
K
5
- e
,co-claw,net,odd anti-hole,twin-house)-free
(3K
2
,C
4
∪ P
2
,C
5
,C
6
,K
2
∪ K
3
,K
3,3
,K
3,3
+e,P
2
∪ P
4
,P
6
,X
18
,X
5
,
2P
3
,
C
6
,
C
7
,
X
84
,antenna,domino,fish)-free
(3K
2
,C
4
∪ P
2
,C
5
,P
2
∪ P
4
,P
5
,S
3
,X
1
,X
46
,X
70
,
3K
2
,
C
4
∪ P
2
,
P
2
∪ P
4
,
X
1
,
X
46
,
X
70
,co-fish,co-rising sun,fish,house,net,rising sun)-free
(3K
2
,C
5
,C
7
,P
2
∪ P
4
,X
173
,
X
11
,net)-free
(3K
2
,C
5
,P
2
∪ P
4
,net)-free
(3K
2
,E,P
2
∪ P
4
,net,odd anti-hole,odd-hole)-free
(3K
2
,E,P
2
∪ P
4
,net)-free
(3K
2
,E,net,odd anti-hole)-free
(3K
2
,co-paw,odd anti-hole)-free
(3K
2
,triangle)-free
(3K
3
,C
n+4
)-free
(3P
3
,C
n+4
,P
3
∪ P
4
,P
5
,X
102
,X
180
,X
181
,X
182
,X
183
,
A
)-free
(3P
3
,P
3
∪ P
4
,P
5
,X
102
,X
180
,X
181
,X
182
,X
183
,X
184
,X
185
,X
186
,X
187
,X
188
,X
189
,X
190
,X
191
,X
192
,X
193
,
5-pan
,
A
,
P
6
,co-twin-C
5
)-free
3d grid
(4,0)-colorable
4-colorable
(4-fan,C
n+4
,K
5
- e,S
3
,X
100
,X
101
,X
102
,
H
,
K
3
∪ 2K
1
)-free
(4-fan,C
n+4
,K
5
- e,S
3
,
H
,
K
3
∪ 2K
1
)-free
(4-fan,K
1,4
,W
4
,W
5
,
A ∪ K
1
,
co-fork ∪ K
1
,
gem ∪ K
1
,
net ∪ K
1
)-free
4-regular
4-regular ∩ hamiltonian
4-regular ∩ hamiltonian ∩ planar
4-regular ∩ planar
(4K
1
,C
7
,S
3
,X
175
,X
176
,X
42
,
X
36
,claw,co-antenna,net,odd anti-hole)-free
(4K
1
,C
7
,X
195
,X
196
,X
38
,X
39
,
W
5
,
X
194
,
X
86
,
X
88
,
X
89
,
X
90
,house)-free
(4K
1
,C
7
,X
38
,X
39
,
K
3,3
∪ K
1
,
W
4
∪ K
1
,
W
5
,
X
86
,
X
87
,
X
88
,
X
89
,
X
90
,butterfly ∪ K
1
,diamond)-free
(4K
1
,co-claw,co-diamond)-free
(4K
1
,gem)-free
(4K
1
,house)-free
(4K
1
,net)-free
(4K
1
,odd anti-hole,odd-hole)-free
4K
1
-free
(5,2)
(5,2)-chordal
(5,2)-odd-chordal
(5,2)-odd-crossing-chordal
(5,2)-odd-noncrossing-chordal
5-colorable
(5-pan,A,P
6
,X
186
,
3P
3
,
P
3
∪ P
4
,
X
102
,
X
180
,
X
181
,
X
182
,
X
183
,
X
184
,
X
185
,
X
187
,
X
188
,
X
189
,
X
190
,
X
191
,
X
192
,
X
193
,house,twin-C
5
)-free
(5-pan,T
2
,X
172
)-free
(5-pan,T
2
,X
172
)-free ∩ planar
5-regular
5-regular ∩ hamiltonian
5-regular ∩ hamiltonian ∩ planar
5-regular ∩ planar
5K
1
-free
(6,1)-chordal
(6,1)-chordal ∩ bipartite
(6,1)-even-chordal
(6,2)-chordal
(6,3)
6-colorable
(6-fan,C
4
∪ P
2
,C
5
,C
6
∪ K
1
,C
7
,K
2
∪ K
3
,K
2,3
,P
2
∪ P
4
,W
4
∪ K
1
,W
6
,X
132
,X
169
,X
176
,X
18
,X
197
,X
198
,X
199
,X
200
,X
201
,X
202
,X
35
,X
84
,
C
4
∪ P
2
,
C
6
∪ K
1
,
C
7
,
P
2
∪ P
4
,
W
4
∪ K
1
,
W
6
,
X
132
,
X
169
,
X
176
,
X
18
,
X
197
,
X
198
,
X
199
,
X
200
,
X
201
,
X
35
,
X
84
,
butterfly ∪ K
1
,butterfly ∪ K
1
,co-6-fan,co-fish,fish)-free
6K
1
-free
(7,5)
7K
1
-free
(A ∪ K
1
,
K
1,4
,
W
4
,
W
5
,co-4-fan,co-fork ∪ K
1
,gem ∪ K
1
,net ∪ K
1
)-free
(A,C
4
∪ 2K
1
,P
2
∪ P
3
,R,
K
5
- e
,
W
5
,co-claw,twin-C
5
,twin-house)-free
(A,C
4
∪ 2K
1
,P
2
∪ P
3
,R,
K
5
- e
,co-claw,odd anti-hole,twin-house)-free
(A,C
5
,C
6
,K
2
∪ K
3
,K
3,3
,K
3,3
+e,K
3,3
-e,P
6
,X
5
,X
98
,
2P
3
,
C
6
,
C
7
,
W
4
,
X
84
,
X
95
,co-butterfly,co-fish,domino,fish)-free
(A,C
5
,C
6
,P
6
,domino,house)-free
(A,C
5
,P
5
,
A
,house,parachute,parapluie)-free
(A,E,S
3
,X
1
,domino,hole,house,net,rising sun)-free
(A,H,K
3,3
,K
3,3
-e,T
2
,X
18
,X
45
,domino,triangle)-free
(A,H,K
3,3
,K
3,3
-e,X
45
,XZ
5
,domino)-free
(A,H,K
3,3
,X
45
,X
46
,X
47
,X
48
,X
49
,X
50
,X
51
,X
52
,X
53
,X
54
,X
55
,X
56
,X
57
,
X
42
)-free
(A,H,K
3,3
,X
45
,triangle)-free
(A,P
6
,clique wheel,domino,hole,house)-free
(A,P
6
,domino)-free
(A,
3P
3
,
C
n+4
,
P
3
∪ P
4
,
X
102
,
X
180
,
X
181
,
X
182
,
X
183
,house)-free
AT-free
AT-free ∩ bipartite
AT-free ∩ chordal
AT-free ∩ claw-free
B
0
-CPG
B
0
-VPG
B
0
-VPG ∩ bipartite
B
0
-VPG ∩ chordal
B
0
-VPG ∩ strongly chordal
B
0
-VPG ∩ triangle-free
B
1
-CPG
B
1
-CPG ∩ triangle-free
B
1
-VCPG
B
1
-VPG
B
2
-VPG
B
3
-VPG
(BW
3
,C
5
,K
3,4
,K
3,4
-e,T
2
,X
18
,X
92
,X
93
,triangle)-free
(BW
3
,W
5
,W
7
,X
103
,X
104
,X
105
,X
106
,X
107
,X
108
,X
109
,X
110
,X
111
,X
112
,X
113
,X
114
,X
115
,X
116
,X
117
,X
118
,X
119
,X
120
,X
121
,X
122
,X
123
,X
124
,X
125
,X
126
,X
53
,X
88
,
C
6
,
C
8
,
T
2
,
X
3
)-free
BW
3
-free
BW
3
-free ∩ modular
Berge
Berge ∩ bull-free
Berge ∩ claw-free
Birkhoff
B
k
-VPG
Bouchet
(C
4
∪ P
2
,C
5
,C
6
,K
2
∪ K
3
,K
2,3
,P
6
,W
4
,X
18
,X
5
,X
84
,
C
4
∪ P
2
,
C
6
,
P
6
,
W
4
,
X
18
,
X
5
,
X
84
,antenna,co-antenna,co-domino,co-fish,domino,fish)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,K
1,4
,X
85
,triangle)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,X
85
,triangle)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,X
85
,triangle)-free ∩ K
1,4
-free
(C
4
,C
5
,C
6
,C
7
,C
8
,K
1,4
,K
5
,K
5
- e,
K
3
∪ 2K
1
,
P
3
∪ 2K
1
,
claw ∪ K
1
,butterfly,cricket,dart,gem)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,K
1,4
,K
5
,K
5
- e,
K
3
∪ 2K
1
,
P
3
∪ 2K
1
,
claw ∪ K
1
,butterfly,cricket,dart,gem)-free ∩ planar
(C
4
,C
5
,C
6
,C
7
,C
8
,XC
11
,claw,diamond)-free
(C
4
,C
5
,C
6
,C
7
,C
8
)-free
(C
4
,C
5
,C
6
,C
7
,C
8
)-free ∩ maximum degree 3 ∩ planar
(C
4
,C
5
,C
6
,S
3
)-free
(C
4
,C
5
,K
4
,diamond)-free
(C
4
,C
5
,K
4
,diamond)-free ∩ planar
(C
4
,C
5
,T
2
)-free
(C
4
,C
5
)-free
(C
4
,C
5
)-free ∩ Helly
(C
4
,C
5
)-free ∩ cop-win
(C
4
,C
6
,C
8
,K
1,4
,odd-cycle)-free
(C
4
,C
6
,C
8
,K
1,4
,odd-cycle)-free ∩ planar
(C
4
,C
6
,odd-cycle)-free
(C
4
,K
4
,claw,diamond)-free
(C
4
,P
5
)-free
(C
4
,P
6
)-free
(C
4
,S
3
)-free
(C
4
,X
91
,claw)-free
(C
4
,
A
,
H
)-free
(C
4
,claw,diamond)-free
(C
4
,co-claw)-free
(C
4
,diamond)-free
(C
4
,odd-hole)-free
(C
4
,triangle)-free
(C
4
,triangle)-free ∩ planar
C
4
-free
C
4
-free ∩ C
6
-free ∩ bipartite
C
4
-free ∩ co-comparability
C
4
-free ∩ induced-hereditary pseudo-modular
C
4
-free ∩ odd-signable
C
4
-free ∩ perfect
(C
5
,C
6
,C
7
,C
8
,P
8
,X
19
,X
20
,X
21
,X
22
,gem,house)-free
(C
5
,C
6
,P
6
,X
17
,X
18
,X
5
,X
98
,
C
6
,
P
6
,antenna,domino)-free
(C
5
,C
6
,P
6
,
C
6
,
P
6
,
X
17
,
X
18
,
X
5
,
X
98
,co-antenna,co-domino)-free
(C
5
,C
6
,P
6
,
C
6
,
P
6
)-free
(C
5
,C
6
,X
164
,X
165
,sunlet
4
,triangle)-free
(C
5
,K
3,3
-e,T
2
,X
18
,X
94
,domino,triangle)-free
(C
5
,P,P
5
,
P
,bull,co-gem,fork)-free
(C
5
,P,P
5
,
P
,house)-free
(C
5
,P,P
5
,house)-free
(C
5
,P,
P
,bull,co-fork,gem,house)-free
(C
5
,P,co-fork,fork,gem,house)-free
(C
5
,P
2
∪ P
3
,house)-free
(C
5
,P
5
,
A
,
C
6
,
P
6
,co-domino)-free
(C
5
,P
5
,
C
6
,
C
7
,
C
8
,
P
8
,
X
19
,
X
20
,
X
21
,
X
22
,co-gem)-free
(C
5
,P
5
,
P
,co-fork,co-gem,fork)-free
(C
5
,P
5
,
P
,house)-free
(C
5
,P
5
,
P
2
∪ P
3
)-free
(C
5
,P
5
,co-fish,fish,house)-free
(C
5
,P
5
,house)-free
(C
5
,P
5
)-free
(C
5
,P
6
,
P
6
)-free
(C
5
,S
3
,X
11
,
3K
2
,
C
7
,
P
2
∪ P
4
,
X
173
)-free
(C
5
,S
3
,X
11
,
3K
2
,
C
7
,
P
2
∪ P
4
,
X
173
)-free ∩ co-line
(C
5
,S
3
,
3K
2
,
P
2
∪ P
4
)-free
(C
5
,house)-free
C
5
-free
(C
6
,C
8
,T
2
,X
3
,
BW
3
,
W
5
,
W
7
,
X
103
,
X
105
,
X
106
,
X
107
,
X
108
,
X
109
,
X
110
,
X
111
,
X
112
,
X
113
,
X
114
,
X
115
,
X
116
,
X
117
,
X
118
,
X
119
,
X
120
,
X
121
,
X
122
,
X
123
,
X
124
,
X
125
,
X
126
,
X
53
,
X
88
,co-X
104
)-free
(C
6
,K
2
∪ K
3
,X
103
,X
37
,X
88
,X
90
,
C
n+4
∪ K
1
,
T
2
,
net ∪ K
1
,co-diamond,co-domino,co-eiffeltower,co-twin-C
5
)-free
(C
6
,K
2
∪ K
3
,X
37
,X
90
,
C
n+4
∪ K
1
,
T
2
,
W
n+4
,
X
31
,co-XF
2
n+1
,co-XF
3
n
,co-domino,co-twin-C
5
)-free
(C
6
,K
3,3
+e,P,P
7
,X
37
,X
41
)-free
(C
6
,P
6
,
P
6
,
X
10
,
X
11
,
X
12
,
X
13
,
X
14
,
X
15
,
X
5
,
X
6
,
X
7
,
X
8
,
X
9
,anti-hole,co-antenna)-free
(C
6
,S
3
,
C
n+4
∪ K
1
,
W
4
,
W
5
,co-claw,net)-free
(C
6
,
C
6
)-free
(C
6
,
C
6
)-free murky
(C
6
,house)-free
(C
6
,triangle)-free
C
6
-free
C
6
-free ∩ modular
(C
7
,odd anti-hole)-free
CIS
CONV
CPG
(C
n+3
∪ K
1
,diamond,paw)-free
(C
n+4
∪ K
1
,C(n,k),W
4
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,C(n,k),X
42
,
T
2
,
X
2
,
X
3
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,W
n+4
,X
31
,XF
2
n+1
,XF
3
n
,
C
6
,
X
37
,
X
90
,domino,twin-C
5
)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,
C
6
,
X
103
,
X
37
,
X
88
,
X
90
,diamond,domino,eiffeltower,net ∪ K
1
,twin-C
5
)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,
X
90
,domino,paw,twin-C
5
)-free
(C
n+4
∪ K
1
,S
3
∪ K
1
,X
42
,
T
2
,
X
2
,
X
3
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,S
3
∪ K
1
,X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,S
3
,W
4
,W
5
,
C
6
,claw,net)-free
(C
n+4
∪ K
1
,S
3
,W
4
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
,H)-free
(C
n+4
,S
3
∪ K
1
,
X
103
,claw,eiffeltower,net ∪ K
1
)-free
(C
n+4
,S
3
∪ K
1
,claw,net)-free
(C
n+4
,S
3
,claw,net)-free
(C
n+4
,S
3
,net)-free
(C
n+4
,S
3
)-free
(C
n+4
,T
2
,X
31
,XF
2
n+1
,XF
3
n
)-free
(C
n+4
,T
2
,XF
2
n+1
)-free
(C
n+4
,T
2
,net)-free
(C
n+4
,X
59
,longhorn)-free
(C
n+4
,XF
1
2n+3
,XF
6
2n+2
,
X
34
,
X
36
,co-XF
2
n+1
,co-XF
3
n
)-free
(C
n+4
,claw,net)-free
(C
n+4
,claw)-free
(C
n+4
,odd-sun)-free
(C
n+4
,sun)-free
C
n+4
-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,X
37
,X
38
,X
39
,X
40
,X
41
,XF
2
n+1
,XF
3
n
,XF
4
n
)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,XF
2
n+1
,XF
3
n
,XF
4
n
,anti-hole,co-XF
1
2n+3
,co-XF
5
2n+3
,co-XF
6
2n+2
)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,XF
2
n+1
,XF
3
n
,XF
4
n
,co-XF
1
2n+3
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd anti-hole)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
36
,XF
1
2n+3
,XF
2
n+1
,XF
3
n
,XF
4
n
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
36
,co-XF
1
2n+3
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd anti-hole)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
36
,XF
1
2n+3
,XF
2
n+1
,XF
3
n
,XF
4
n
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
36
,co-XF
1
2n+3
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd-hole)-free
(C
n+6
,X
37
,claw,co-antenna,net,sun)-free
(C
n+6
,odd-cycle)-free
C
n+6
-free
C
n+7
-free
D
Delaunay
Deza
Dilworth 2
Dilworth 3
Dilworth 4
(E,P)-free
(E,triangle)-free
E-free
E-free ∩ planar
EPT
EPT ∩ chordal
F
n
grid
Gabriel
Gallai
Gallai-perfect
(H,K
3
∪ 2K
1
,
C
n+4
,
K
5
- e
,
X
100
,
X
101
,
X
102
,co-4-fan,net)-free
(H,K
3
∪ 2K
1
,
C
n+4
,
K
5
- e
,co-4-fan,net)-free
(H,triangle)-free
HH-free
HHD-free
HHD-free ∩ co-HHD-free
HHDA-free
HHDS-free
HHDbicycle-free
HHG-free
HHP-free
Hamilton-connected
Hamiltonian hereditary
Hamming
Helly
Helly 2-acyclic subtree
Helly ∩ bridged
Helly ∩ reflexive
Helly cactus subtree
Helly cactus subtree ∩ perfect
Helly chordal
Helly chordal ∩ clique-chordal
Helly circle
Helly circular arc
Helly circular arc ∩ (
C
7
,odd-hole)-free
Helly circular arc ∩ concave-round
Helly circular arc ∩ perfect
Helly circular arc ∩ quasi-line
Helly circular arc ∩ self-clique
Helly subtree
Hilbertian
H
n,q
grid
(K
1,4
,P,P
5
,fork)-free
(K
1,4
,P
5
)-free
(K
1,4
,diamond)-free
(K
1,4
,odd-cycle)-free
(K
1,4
,odd-cycle)-free ∩ planar
(K
1,4
,paw)-free
K
1,4
-free
K
1,4
-free ∩ almost claw-free ∩ locally connected
K
1,4
-free ∩ well covered
(K
1,5
,triangle)-free
(K
2
∪ K
3
,P
5
,
X
37
,
X
38
,co-diamond,co-domino,co-twin-C
5
)-free
(K
2
∪ K
3
,X
11
,X
127
,X
128
,X
129
,X
131
,X
133
,X
135
,X
136
,X
137
,X
138
,X
139
,X
140
,X
141
,X
142
,X
143
,X
144
,X
145
,X
146
,X
147
,X
148
,X
149
,X
150
,X
151
,X
30
,X
35
,X
46
,XF
1
2n+3
,XF
6
2n+3
,
2P
3
,
3K
2
,
C
4
∪ P
2
,
C
6
,
P
6
,
X
130
,
X
132
,
X
134
,
X
152
,
X
153
,
X
154
,
X
155
,
X
156
,
X
157
,
X
158
,
X
18
,
X
84
,antenna,co-domino,co-fish,eiffeltower,longhorn,odd-hole)-free
(K
2
∪ K
3
,X
90
,
C
n+4
∪ K
1
,
T
2
,co-domino,co-paw,co-twin-C
5
)-free
(K
2
∪ K
3
,
P
,anti-hole)-free
(K
2
∪ K
3
,
P
,house)-free
(K
2
∪ K
3
,co-diamond)-free
(K
2
∪ K
3
,house)-free
K
2
∪ K
3
-free
K
2
∪ claw-free
(K
2,3
,P,P
5
)-free
(K
2,3
,P,hole)-free
(K
2,3
,P
5
)-free
(K
2,3
,X
37
,X
38
,diamond,domino,house,twin-C
5
)-free
(K
2,3
,diamond)-free
(K
2,3
,diamond)-free ∩ weakly modular
K
2,3
-free
K
2,3
-free ∩ hereditary modular
(K
3
∪ 2K
1
,
K
3
∪ 2K
1
,bull,co-cricket,co-dart,cricket,dart)-free
(K
3
∪ P
3
,
C
6
,
P
,
P
7
,
X
37
,
X
41
)-free
(K
3,3
∪ K
1
,K
4
,W
4
∪ K
1
,W
5
,X
86
,X
87
,X
88
,X
89
,X
90
,
C
7
,
X
38
,
X
39
,
butterfly ∪ K
1
,co-diamond)-free
(K
3,3,3
,
C
n+4
)-free
(K
3,3
,K
3,3
+e,
2P
3
,
C
n+4
)-free
(K
3,3
,K
5
)-minor-free
(K
3,3
,P
5
)-free
(K
3,3
,
C
n+4
)-free
(K
3,3
-e,P
5
,X
98
)-free
(K
3,3
-e,P
5
,X
99
)-free
(K
3,3
-e,P
5
)-free
(K
4,4
,P
5
)-free
(K
4
,P
5
,W
5
,X
194
,X
86
,X
88
,X
89
,X
90
,
C
7
,
X
195
,
X
196
,
X
38
,
X
39
)-free
(K
4
,P
5
)-free
(K
4
,S
3
,X
36
,
C
7
,
X
175
,
X
176
,
X
42
,antenna,co-claw,net,odd-hole)-free
(K
4
,S
3
)-free
(K
4
,claw,diamond)-free
(K
4
,co-gem)-free
(K
4
,odd anti-hole,odd-hole)-free
(K
4
,odd anti-hole,odd-hole)-free ∩ dually chordal
K
4
-free
K
4
-free ∩ dually chordal ∩ perfect
K
4
-free ∩ map
K
4
-free ∩ perfect
K
4
-free ∩ planar
(K
5
- e,S
3
,
3K
2
,
A
,
C
4
∪ 2K
1
,
E
,
P
2
∪ P
3
,
R
,claw,co-twin-house,odd-hole)-free
(K
5
- e,W
5
,
A
,
C
4
∪ 2K
1
,
P
2
∪ P
3
,
R
,claw,co-twin-C
5
,co-twin-house)-free
(K
5
- e,
A
,
C
4
∪ 2K
1
,
P
2
∪ P
3
,
R
,claw,co-twin-house,odd-hole)-free
K
5
-free
K
6
-free
K
7
-free
Laman
Laman ∩ planar
Matula perfect
Meyniel
Meyniel ∩ co-Meyniel
Meyniel ∩ weakly chordal
Mycielski
N
*
N
*
-perfect
(P,P
5
)-free
(P,P
7
)-free
(P,P
8
)-free
(P,T
2
)-free
(P,co-fork)-free
(P,star
1,2,3
)-free
(P,star
1,2,4
)-free
(P,star
1,2,5
)-free
P-free
(P
2
∪ P
3
,P
3
∪ 2K
1
,X
188
,X
214
,
W
4
,
X
102
,
X
204
,
X
209
,
X
210
,
X
212
,
X
213
,
X
215
,
X
216
,
X
217
,
X
218
,
X
86
,co-gem)-free
(P
2
∪ P
3
,house)-free
(P
2
∪ P
4
,triangle)-free
P
2
∪ P
4
-free
P
4
-bipartite
P
4
-brittle
P
4
-comparability
P
4
-indifference
P
4
-laden
P
4
-simplicial
(P
5
,S
3
,
A
,
E
,
X
1
,anti-hole,co-domino,co-rising sun,net)-free
(P
5
,X
82
,X
83
)-free
(P
5
,
A
,
P
6
,anti clique wheel,anti-hole,co-domino)-free
(P
5
,
A
,anti-hole,co-domino)-free
(P
5
,
C
6
)-free
(P
5
,
C
6
)-free ∩ weakly chordal
(P
5
,
P
,anti-hole)-free
(P
5
,
P
2
∪ P
3
)-free
(P
5
,
X
38
,co-gem)-free
(P
5
,anti-hole,co-bicycle,co-domino)-free
(P
5
,anti-hole,co-domino,co-sun)-free
(P
5
,anti-hole,co-domino)-free
(P
5
,anti-hole,co-gem)-free
(P
5
,anti-hole)-free
(P
5
,bull,odd anti-hole)-free
(P
5
,bull)-free
(P
5
,claw)-free
(P
5
,co-domino,co-gem)-free
(P
5
,co-fork)-free
(P
5
,cricket)-free
(P
5
,fork)-free
(P
5
,house)-free
P
5
-free
P
5
-free ∩ tripartite
P
5
-free ∩ weakly chordal
(P
6
,X
10
,X
11
,X
12
,X
13
,X
14
,X
15
,X
5
,X
6
,X
7
,X
8
,X
9
,
C
6
,
P
6
,antenna,hole)-free
(P
6
,X
30
,X
8
)-free
(P
6
,claw)-free
P
6
-free
P
6
-free ∩ tripartite
(P
7
,odd-cycle)-free
P
7
-free
P
7
-free ∩ bipartite
PI
PI
*
PURE-2-DIR
PURE-3-DIR
PURE-k-DIR
Raspail
(S
3
,S
4
,net)-free
(S
3
,T
2
,X
2
,X
3
,
C
n+4
∪ K
1
,
C(n,k)
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,T
2
,X
2
,X
3
,
C
n+4
∪ K
1
,
S
3
∪ K
1
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,T
2
,X
205
,X
206
,X
207
,X
208
,
C
n+4
∪ K
1
,
S
3
∪ K
1
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,T
2
,X
205
,X
206
,X
207
,X
208
,
X
42
)-free
(S
3
,
3K
2
,
E
,
P
2
∪ P
4
,odd anti-hole,odd-hole)-free
(S
3
,
3K
2
,
E
,
P
2
∪ P
4
)-free
(S
3
,
3K
2
,
E
,odd-hole)-free
(S
3
,
3K
2
,
E
,odd-hole)-free ∩ line
(S
3
,
C
n+4
∪ K
1
,
C(n,k)
,
W
4
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,
C
n+4
,
S
3
∪ K
1
,co-claw)-free
(S
3
,
C
n+4
,
T
2
)-free
(S
3
,
C
n+4
,co-claw,net)-free
(S
3
,
C
n+4
,co-claw)-free
(S
3
,
C
n+4
,net)-free
(S
3
,
C
n+6
,
X
37
,antenna,co-claw,co-sun)-free
(S
3
,claw,net)-free
(S
3
,claw,net)-free ∩ chordal
(S
3
,co-claw,net)-free
(S
3
,co-claw)-free
(S
3
,net)-free
(S
3
,net)-free ∩ chordal
(S
3
,net)-free ∩ split
(S
3
,net)-free ∩ sun-free
S
3
-free
S
3
-free ∩ chordal
SEG
(T
2
,X
2
,X
3
,hole,triangle)-free
(T
2
,X
205
,X
206
,X
207
,X
208
,even-hole,odd-cycle)-free
Urquhart
V-perfect
VPG
W
2n+3
-free
(W
4
,W
5
,butterfly)-free
(W
4
,X
102
,X
204
,X
209
,X
210
,X
212
,X
213
,X
214
,X
215
,X
216
,X
217
,X
218
,X
86
,
P
2
∪ P
3
,
P
3
∪ 2K
1
,
X
188
,gem)-free
(W
4
,claw,gem,odd-hole)-free
(W
4
,claw,gem)-free
(W
4
,claw)-free
(W
4
,gem)-free
(W
4
,gem)-free ∩ short-chorded
Welsh-Powell opposition
Welsh-Powell perfect
W
n+4
-free
X-chordal
X-chordal ∩ X-conformal
X-conformal
X-conformal ∩ bipartite ∩ hereditary X-chordal
X-star-chordal
(X
103
,
C
n+4
,
S
3
∪ K
1
,
net ∪ K
1
,co-claw,co-eiffeltower)-free
(X
12
,X
5
,X
95
,X
96
,X
97
,
X
12
,
X
5
,
X
95
,
X
96
,
X
97
,
claw ∪ triangle
,claw ∪ triangle,co-cricket,co-twin-house,cricket,odd anti-hole,odd-hole,twin-house)-free
(X
30
,XZ
1
,XZ
4
,longhorn)-free
(X
34
,X
36
,XF
2
n+1
,XF
3
n
,
C
n+4
,co-XF
1
2n+3
,co-XF
6
2n+2
)-free
(X
37
,diamond,even-cycle)-free
(X
38
,gem,house)-free
(X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,net)-free
(X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,net)-free ∩ normal circular arc ∩ quasi-line
(X
79
,X
80
)-free
(X
79
,X
80
)-free ∩ modular
(X
91
,claw)-free
(XC
1
,XC
2
,XC
3
,XC
4
,XC
5
,XC
6
,XC
7
,XC
8
)-free
XC
10
-free
XC
10
-free ∩ pseudo-modular
XC
10
-free ∩ weakly modular
(XC
11
,claw,diamond)-free
(XC
11
,odd-cycle)-free
(XC
11
,odd-cycle)-free ∩ planar
(XC
12
,triangle)-free
(XC
12
,triangle)-free ∩ planar
XC
13
-free
(XC
7
,
XC
1
,
XC
2
,
XC
3
,
XC
4
,
XC
5
,
XC
6
,
XC
8
)-free
(XF
1
2n+3
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,hole)-free
(XF
1
2n+3
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,odd-hole)-free
β-perfect
β-perfect ∩ co-β-perfect
β-perfect ∩ perfect
cal C(G)-perfect
cal P
3
-perfect
2P
3
-free
(
3K
2
,odd-hole,paw)-free
(
5-pan
,
T
2
,
X
172
)-free
(
A
,
P
6
,co-domino)-free
BW
3
-free
C
6
-free
(
C
7
,odd-hole)-free
(
C
n+3
∪ K
1
,co-diamond,co-paw)-free
(
C
n+4
,
H
)-free
(
C
n+4
,
T
2
,
X
31
,co-XF
2
n+1
,co-XF
3
n
)-free
(
C
n+4
,
T
2
,co-XF
2
n+1
)-free
(
C
n+4
,
X
59
,co-longhorn)-free
(
C
n+4
,co-claw)-free
(
C
n+4
,co-sun)-free
(
C
n+4
,net)-free
(
C
n+4
,odd co-sun)-free
C
n+4
-free
(
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,
X
37
,
X
38
,
X
39
,
X
40
,
X
41
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
)-free
(
C
n+6
,odd anti-cycle)-free
C
n+6
-free
C
n+7
-free
(
E
,
P
)-free
E
-free
(
K
1,4
,
P
,co-fork,house)-free
(
K
1,4
,co-diamond)-free
(
K
1,4
,co-paw)-free
(
K
1,4
,house)-free
(
K
1,4
,odd anti-cycle)-free
K
1,4
-free
K
2
∪ claw
-free
(
P
,
P
7
)-free
(
P
,
P
8
)-free
(
P
,
T
2
)-free
(
P
,
star
1,2,3
)-free
(
P
,co-star
1,2,4
)-free
(
P
,co-star
1,2,5
)-free
(
P
,fork)-free
(
P
,house)-free
P
-free
P
2
∪ P
4
-free
(
P
6
,
X
30
,
X
8
)-free
(
P
6
,co-claw)-free
P
6
-free
(
P
7
,odd anti-cycle)-free
P
7
-free
(
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,even anti-hole,odd anti-cycle)-free
W
2n+3
-free
(
W
4
,
W
5
,co-butterfly)-free
(
W
4
,co-claw,co-gem,odd anti-hole)-free
(
W
4
,co-claw,co-gem)-free
(
W
4
,co-claw)-free
(
W
4
,co-gem)-free
W
n+4
-free
(
X
30
,
XZ
1
,
XZ
4
,co-longhorn)-free
(
X
37
,co-diamond,even anti-cycle)-free
(
X
79
,
X
80
)-free
(
X
82
,
X
83
,house)-free
(
X
91
,co-claw)-free
XC
10
-free
(
XC
11
,co-claw,co-diamond)-free
(
XC
11
,odd anti-cycle)-free
XC
11
-free
XC
12
-free
XC
13
-free
(n+4)-pan
-free
odd-cycle ∪ K
1
-free
τ
k
-perfect for all k >= 2
absolute bipartite retract
absolute reflexive retract
absolutely perfect
absorbantly perfect
all-4-simplicial
almost CIS
almost claw-free
almost median
almost-split
alternately colourable
alternately orientable
alternately orientable ∩ co-comparability
alternation
(anti-hole,bull,odd-hole)-free
(anti-hole,co-sun,hole)-free
(anti-hole,fork)-free
(anti-hole,hole,sun)-free
(anti-hole,hole)-free
(anti-hole,odd anti-cycle)-free
(anti-hole,odd-hole)-free
anti-hole-free
apex
astral triple-free
b-perfect
b-perfect ∩ chordal
balanced
balanced 2-interval
balanced ∩ chordal
balanced ∩ co-line
balanced ∩ line
balanced ∩ paw-free
bar visibility
basic 4-leaf power
basic perfect
biclique separable
biclique-Helly
biconvex
bigeodetic
binary Hamming
bip
*
bipartable
bipartite
bipartite ∩ bounded tolerance
bipartite ∩ boxicity 2
bipartite ∩ co-comparability
bipartite ∩ co-perfectly orderable
bipartite ∩ co-trapezoid
bipartite ∩ convex-round
bipartite ∩ cubic ∩ planar
bipartite ∩ girth>=9 ∩ maximum degree 3 ∩ planar
bipartite ∩ grid intersection
bipartite ∩ maximum degree 3
bipartite ∩ maximum degree 3 ∩ planar
bipartite ∩ maximum degree 4 ∩ planar
bipartite ∩ mock threshold
bipartite ∩ planar
bipartite ∩ probe interval
bipartite ∩ quasi-median
bipartite ∩ tolerance
bipartite ∩ trapezoid
bipartite ∩ unit grid intersection
bipartite ∩ weakly chordal
bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ double split ∪ line graphs of bipartite graphs
bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ line graphs of bipartite graphs
bipartite ∪ co-bipartite ∪ split
bipartite permutation
bipartite tolerance
biplanar
bipolarizable
bisplit
bisplit ∩ triangle-free
bithreshold
bitolerance
book thickness 2
bounded bitolerance
bounded cutwidth
bounded degree
bounded degree ∩ bounded treewidth
bounded multitolerance
bounded tolerance
bounded treewidth
boxicity 1
boxicity 2
boxicity 2 ∩ co-bipartite
bridged
bridged ∩ clique-Helly
brittle
building-free
building-free ∩ even-signable
building-free ∩ odd-signable
(bull,co-fork)-free
(bull,fork)-free
(bull,hole,odd anti-hole)-free
(bull,house,odd-hole)-free
(bull,house)-free
(bull,odd anti-hole,odd-hole)-free
bull-free
bull-free ∩ perfect
(butterfly,claw)-free
(butterfly,gem)-free
caterpillar arboricity <= 2
charming
chordal
chordal ∩ circular arc ∩ claw-free
chordal ∩ (claw,net)-free
chordal ∩ claw-free
chordal ∩ clique-Helly
chordal ∩ clique-chordal
chordal ∩ co-chordal
chordal ∩ co-chordal ∩ co-comparability ∩ comparability
chordal ∩ co-comparability
chordal ∩ comparability
chordal ∩ diametral path
chordal ∩ domination perfect
chordal ∩ dually chordal
chordal ∩ hamiltonian
chordal ∩ hereditary clique-Helly
chordal ∩ hereditary dominating pair
chordal ∩ irredundance perfect
chordal ∩ neighbourhood perfect
chordal ∩ odd-sun-free
chordal ∩ proper circular arc
chordal ∩ sun-free
chordal ∩ unipolar
chordal ∩ unit circular arc
chordal ∪ co-chordal
chordal bipartite
chordal-perfect
circle
circle ∩ diamond-free
circle graph with equator
circle-n-gon, fixed n
circle-polygon
circle-trapezoid
circular arc
circular arc ∩ clique-Helly
circular arc ∩ co-bipartite
circular arc ∩ comparability
circular arc ∩ diamond-free
circular arc ∩ paw-free
circular arc ∩ perfect
circular convex bipartite
circular interval
circular perfect
circular permutation
circular strip
circular trapezoid
(claw,diamond,odd-hole)-free
(claw,diamond)-free
(claw,net)-free
(claw,odd anti-hole,odd-hole)-free
(claw,odd anti-hole)-free
(claw,odd anti-hole)-free ∩ tripartite
(claw,odd-hole)-free
(claw,odd-hole)-free ∩ tripartite
claw-free
claw-free ∩ interval
claw-free ∩ locally connected
claw-free ∩ mock threshold
claw-free ∩ normal Helly circular arc
claw-free ∩ odd anti-hole-free ∩ tripartite
claw-free ∩ odd-hole-free ∩ tripartite
claw-free ∩ perfect
claw-free ∩ upper domination perfect
claw-free ∩ well covered
clique graphs
clique graphs of Helly circular arc
clique graphs of interval
clique graphs of normal Helly circular arc
clique separable
clique-Helly
clique-Helly ∩ clique-chordal
clique-Helly ∩ dismantlable
clique-Helly ∩ dismantlable ∩ reflexive
clique-chordal
clique-perfect
clique-perfect ∩ triangle-free
co-2-subdivision
co-Gallai
co-HHD-free
co-Matula perfect
co-Meyniel
co-P
4
-brittle
co-Welsh-Powell opposition
co-Welsh-Powell perfect
co-β-perfect
co-biclique separable
co-biconvex
co-bipartite
co-bipartite ∩ concave-round
co-bipartite ∩ normal circular arc
co-bipartite ∩ proper circular arc
co-bithreshold
co-bithreshold ∩ split
co-bounded tolerance
co-building-free
(co-butterfly,co-claw)-free
(co-butterfly,co-gem)-free
co-chordal
co-chordal ∩ comparability
co-chordal ∩ superperfect
co-circular perfect
(co-claw,co-diamond,odd anti-hole)-free
(co-claw,co-diamond)-free
(co-claw,house)-free
(co-claw,odd anti-hole,odd-hole)-free
(co-claw,odd anti-hole)-free
(co-claw,odd-hole)-free
co-claw-free
co-comparability
co-comparability ∩ comparability
co-comparability ∩ tolerance
co-comparability ∪ comparability
co-comparability graphs of dimension d posets
co-comparability graphs of posets of interval dimension 2
co-comparability graphs of posets of interval dimension 2, height 2
co-comparability graphs of posets of interval dimension d
(co-cricket,house)-free
(co-diamond,even anti-cycle)-free
(co-diamond,odd anti-hole)-free
co-diamond-free
co-domino-free
co-forest-perfect
(co-fork,hole)-free
(co-fork,house)-free
co-fork-free
co-gem-free
co-hereditary clique-Helly
co-interval
co-interval ∩ interval
co-interval ∪ interval
co-interval bigraph
co-interval containment bigraph
co-interval filament
co-interval mixed
co-leaf power
co-line
co-line graphs of bipartite graphs
(co-odd building,odd anti-hole)-free
(co-paw,odd anti-hole)-free
co-paw-free
co-perfectly orderable
co-planar
co-proper interval bigraph
co-quasi-line
co-strongly chordal
co-sun-free
co-threshold tolerance
co-tolerance
co-trapezoid
co-unipolar
co-unipolar ∪ unipolar
cograph contraction
coin
comparability
comparability ∩ split
comparability ∩ weakly chordal
comparability graphs of dimension 2 posets
comparability graphs of dimension 3 posets
comparability graphs of dimension 4 posets
comparability graphs of dimension d posets
comparability graphs of posets of interval dimension 2
comparability graphs of posets of interval dimension 2, height 2
comparability graphs of posets of interval dimension 2, height 3
comparability graphs of posets of interval dimension d
comparability graphs of semiorders
complete Hamming
concave-round
containment graph of circles
containment graph of intervals
containment graphs
containment graphs of circular arcs
convex
convex-round
cop-win
(cross,triangle)-free
cubic
cubic ∩ hamiltonian
cubic ∩ hamiltonian ∩ planar
cubic ∩ planar
cubical
cycle-bicolorable
d-trapezoid
diametral path
(diamond,even-cycle)-free
(diamond,odd-hole)-free
diamond-free
diamond-free ∩ perfect
directed path
disk
disk contact
disk-Helly
dismantlable
distance regular
distance regular of diameter 2
domination
domination perfect
domination perfect ∩ planar
domination perfect ∩ triangle-free
domino
(domino,gem,house)-free
domino-free
double split
doubled
doubly chordal
dually chordal
dually chordal ∩ tripartite
edge regular
equimatchable
even anti-cycle-free
even anti-hole-free
even-cycle-free
even-hole-free
even-hole-free ∩ probe chordal
even-signable
extended P
4
-laden
forest-perfect
(fork,house)-free
fork-free
frame hereditary dominating pair
fully cycle extendable
fuzzy circular interval
fuzzy linear interval
gem-free
generalized split
generalized strongly chordal
generically minimally rigid
genus 0
genus 1
geodetic
girth>=9
good
graceful
grid
grid graph
grid graph ∩ maximum degree 3
grid intersection
gridline
half-disk Helly
hamiltonian
hamiltonian ∩ interval
hamiltonian ∩ planar
hamiltonian ∩ split
harmonious
hereditary Helly
hereditary Matula perfect
hereditary N
*
-perfect
hereditary V-perfect
hereditary Welsh-Powell opposition
hereditary Welsh-Powell perfect
hereditary X-chordal
hereditary absolute bipartite retract
hereditary biclique-Helly
hereditary clique-Helly
hereditary clique-Helly ∩ line ∩ perfect
hereditary clique-Helly ∩ paw-free ∩ perfect
hereditary clique-Helly ∩ self-clique
hereditary disk-Helly
hereditary dismantlable
hereditary dominating pair
hereditary dually chordal
hereditary homogeneously orderable
hereditary maximal clique irreducible
hereditary median
hereditary modular
hereditary neighbourhood-Helly
hereditary open-neighbourhood-Helly
hereditary perfect elimination bipartite
hereditary sat
hereditary weakly modular
(hole,odd anti-hole)-free
(hole,odd-cycle)-free
hole-free
hole-free ∩ planar
homogeneously orderable
homothetic triangle contact
(house,hole,domino,sun)-free
house-free
house-free ∩ weakly chordal
hypercube
i-triangulated
indifference
induced-hereditary pseudo-modular
intersection graphs of parallelograms (squares)
interval
interval bigraph
interval containment bigraph
interval enumerable
interval filament
interval regular
interval regular of diameter 2
irredundance perfect
irredundance perfect with ir(G)=2
irredundance perfect with ir(G)<= 4
isometric subgraph of a hypercube
isometric-HH-free
isometric-hereditary pseudo-modular
k-DIR
k-SEG
k-polygon
k-regular, fixed k
k-regular, fixed k>= 3
k-regular, fixed k>= 6
kernel solvable
leaf power
leaf power ∩ min leaf power
leaf power ∪ min leaf power
line
line ∩ mock threshold
line ∩ perfect
line ∩ well covered
line graphs of Helly hypergraphs of rank 3
line graphs of bipartite graphs
line graphs of bipartite multigraphs
line graphs of linear hypergraphs of rank 3
line graphs of multigraphs without triangles
line graphs of planar cubic bipartite graphs
line graphs of triangle-free graphs
line perfect
linear arboricity <= 2
linear domino
linear domino ∩ maximum degree 4
linear interval
linearly convex triangular grid graph
locally bipartite
locally chordal
locally connected
locally connected ∩ maximum degree 4
locally connected ∩ maximum degree 7
locally connected ∩ triangular grid graph
locally perfect
locally split
map
max-tolerance
maxibrittle
maximal clique irreducible
maximal planar
maximum degree 3
maximum degree 3 ∩ planar ∩ triangle-free
maximum degree 4
maximum degree 5
maximum degree 6
maximum degree 7
median
median ∩ planar
middle
min leaf power
mock threshold
mock threshold ∩ split
modular
modular ∩ open-neighbourhood-Helly
module-composed
monopolar
multitolerance
murky
(n+4)-pan-free
nK
2
-free, fixed n
nP
3
-free, fixed n
nearly bipartite
neighbourhood chordal
neighbourhood perfect
neighbourhood-Helly
neighbourhood-Helly ∩ pseudo-modular ∩ reflexive
neighbourhood-Helly ∩ triangle-free
net-free
normal
normal Helly circular arc
normal circular arc
odd anti-cycle-free
(odd anti-hole,odd-hole)-free
odd anti-hole-free
(odd building,odd-hole)-free
odd co-sun-free
odd-cycle ∪ K
1
-free
odd-cycle-free
(odd-hole,paw)-free
odd-hole-free
odd-hole-free ∩ planar
odd-hole-free ∩ pretty
odd-signable
odd-signable ∩ triangle-free
odd-sun-free
open-neighbourhood-Helly
opposition
outer-string
overlap
(p,q)-colorable
(p,q)-split
(p,q<=2)-colorable
p-connected
p-tree
pairwise compatibility
parallelepiped
parity
partial 3d grid
partial bar visibility
partial cube
partial grid
partial rectangle visibility
partitionable
path orderable
paw-free
paw-free ∩ perfect
perfect
perfect ∩ planar
perfect ∩ split-neighbourhood
perfect ∩ triangle-free
perfect cochromatic
perfect connected-dominant
perfect elimination bipartite
perfectly 1-transversable
perfectly colorable
perfectly contractile
perfectly orderable
permutation
permutation ∩ split
planar
planar ∩ strongly regular
planar ∩ triangle-free
planar of maximum degree 3
planar of maximum degree 4
polar
polyhedral
power-chordal
premedian
preperfect
pretty
probe (1,2)-colorable
probe (2,2)-colorable
probe AT-free
probe Gallai
probe HHDS-free
probe Meyniel
probe chordal
probe chordal ∩ weakly chordal
probe chordal bipartite
probe co-bipartite
probe co-comparability
probe comparability
probe diamond-free
probe interval
probe interval bigraph
probe permutation
probe proper interval
probe split
probe strongly chordal
probe unit interval
proper Helly circular arc
proper chordal
proper circular arc
proper interval
proper interval bigraph
proper tolerance
pseudo-median
pseudo-median ∩ triangle-free
pseudo-modular
pseudo-modular ∩ triangle-free
pseudo-split
(q,t)
quasi-Meyniel
quasi-brittle
quasi-line
quasi-median
quasi-parity
quasitriangulated
rectagraph
rectangle intersection
rectangle visibility
reflexive
relative neighbourhood graph
rigid circuit
rooted directed path
self-clique
self-complementary
semi-median
semi-square intersection
semiperfectly orderable
short-chorded
skeletal
slender
slightly triangulated
slim
solid grid graph
solid triangular grid graph
spider graph
split
split ∩ strongly chordal
split ∩ superperfect
split ∩ threshold signed
split-neighbourhood
split-perfect
square of tree
star convex
starlike
strict 2-threshold
strict B
1
-VCPG
strict quasi-parity
strictly clique irreducible
string
strong asteroid free
strong domination perfect
strongly 3-colorable
strongly chordal
strongly circular perfect
strongly even-signable
strongly odd-signable
strongly orderable
strongly perfect
strongly regular
subhamiltonian
substar
subtree filament
subtree overlap
sun-free
sun-free ∩ weakly chordal
superbrittle
superperfect
thickness <= 2
threshold signed
threshold tolerance
tolerance
tolerance ∩ triangle-free
toroidal
totally unimodular
trapezoepiped
trapezoid
tree convex
tree-perfect
triad convex
triangle contact
triangle-free
triangular grid graph
triangulated
tripartite
unbreakable
undirected path
unigraph
unimodular
unipolar
unit 2-circular arc
unit 2-circular track
unit 2-interval
unit 2-track
unit 3-circular track
unit 3-interval
unit 3-track
unit Helly circle
unit Helly circular arc
unit bar visibility
unit circular arc
unit disk
unit grid intersection
unit interval
unit interval bigraph
unit tolerance
universally signable
upper domination perfect
upper irredundance perfect
very strongly perfect
visibility
walk regular
weak bar visibility
weak bipolarizable
weak bisplit
weak dominating pair
weak rectangle visibility
weakly chordal
weakly geodetic
weakly median
weakly modular
well covered
well-dominated
well-partitioned chordal
wing-triangulated
back to top
AltStyle
によって変換されたページ
(->オリジナル)
/
アドレス:
モード:
デフォルト
音声ブラウザ
ルビ付き
配色反転
文字拡大
モバイル