Graphclass: (Cn+4 ∪ K1,S3 ∪ K1,X42,T2,X2,X3,odd-cycle ∪
K1,even anti-hole,net)-free
References
[
1040]
A.C. Tucker
Structure theorems for some circular arc graphs
Discrete Math. 7 1974 167--195
Equivalent classes
Only references for direct inclusions are given. Where no reference is given for an equivalent class, check other equivalent
classes or use the Java application.
Inclusions
The map shows the inclusions between the current class and a fixed set of landmark classes. Minimal/maximal is with respect
to the contents of ISGCI. Only references for direct inclusions are given. Where no reference is given, check equivalent classes
or use the Java application. To check relations other than inclusion (e.g. disjointness) use the Java application, as well.
Map
Inclusion map for (C_{n+4} \cup K_1,S_3 \cup K_1,X_{42},\co{T_2},\co{X_2},\co{X_3},\co{odd-cycle \cup K_1},even anti-hole,net)--free
Minimal superclasses
- (Cn+4 ∪ K1,S3 ∪ K1,X42,T2,X205,X206,X207,X208,odd-cycle ∪ K1,even anti-hole,net)-free (known proper)
- (X42,T2,X205,X206,X207,X208,net)-free ∩ normal circular arc
∩ quasi-line (known proper)
- circle (known proper)
- concave-round (known proper)
- overlap (known proper)
- unit 2-interval (known proper)
Maximal subclasses
- (3K1,T2,X2,X3,anti-hole)-free
[from the set of forbidden subgraphs]
(known proper)
- (3K1,paw)-free
[from the set of forbidden subgraphs]
(known proper)
- (Cn+4 ∪ K1,C(n,k),X42,T2,X2,X3,odd-cycle ∪ K1,even anti-hole,net)-free (known proper)
- (Cn+4,S3 ∪ K1,claw,net)-free (known proper)
- chordal ∩ proper circular arc (known proper)
- clique graphs of Helly circular arc (known proper)
- co-bipartite ∩ proper circular arc (known proper)
- co-proper interval bigraph (known proper)
- unit circular arc (known proper)
Speed
Speed
[?] The speed of a class $X$ is the function $n \mapsto |X_n|,ドル where $X_n$ is the set of $n$-vertex labeled graphs in $X$.
Depending on the rate of growths of the speed of the class, ISGCI
distinguishes the following values of the parameter:
Constant
Polynomial
Exponential
Factorial
Superfactorial (2ドル^{o(n^2)}$ )
Superfactorial (2ドル^{\Theta(n^2)}$ )
factorial
at most factorial on
SEG
[
1792]
(no preview available)
[
995]
J.P. Spinrad
Efficient graph representations
American Mathematical Society, Fields Institute Monograph Series 19 (2003)
at least factorial on
P3-free
[
1791]
V.V. Lozin, C. Mayhill, V. Zamaraev
Locally bounded coverings and factorial properties of graphs
European J. Combin. 33 No.4 534-543 (2012)
[
1792]
(no preview available)
Parameters
acyclic chromatic number
[?] The acyclic chromatic number of a graph $G$ is the smallest size of a vertex partition $\{V_1,\dots,V_l\}$ such that each $V_i$ is an independent set
and for all $i,j$ that graph $G[V_i\cup V_j]$ does not contain a cycle.
Unbounded
Unbounded from chromatic number
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
bandwidth
[?] The bandwidth of a graph $G$ is the shortest maximum "length" of an edge over all one dimensional layouts of $G$. Formally, bandwidth is defined as $\min_{i \colon V \rightarrow \mathbb{N}\;}\{\max_{\{u,v\}\in E\;} \{|i(u)-i(v)|\}\mid i\text{ is injective}\}$.
Unbounded
Unbounded from acyclic chromatic numberUnbounded from book thicknessUnbounded from booleanwidthUnbounded from branchwidthUnbounded from carvingwidthUnbounded from chromatic numberUnbounded from cliquewidthUnbounded from cochromatic numberUnbounded from cutwidthUnbounded from degeneracyUnbounded from maximum cliqueUnbounded from maximum degreeUnbounded from pathwidthUnbounded from rankwidthUnbounded from treewidthUnbounded on
complete
[by definition]
book thickness
[?] A book embedding of a graph $G$ is an embedding of $G$ on a collection of half-planes (called pages) having the same line
(called spine) as their boundary, such that the vertices all lie on the spine and there are no crossing edges. The book thickness of a graph $G$ is the smallest number of pages over all book embeddings of $G$.
Unbounded
Unbounded from acyclic chromatic numberUnbounded from chromatic numberUnbounded from cochromatic numberUnbounded from degeneracyUnbounded from maximum cliqueUnbounded on
complete
[
1778]
F. Bernhart, P.C. Kainen
The book thickness of a graph
J. of Combin. Th. (B) 27 320-331 (1979)
booleanwidth
[?] Consider the following decomposition of a graph $G$ which is defined as a pair $(T,L)$ where $T$ is a binary tree and $L$
is a bijection from $V(G)$ to the leaves of the tree $T$. The function $\text{cut-bool} \colon 2^{V(G)} \rightarrow R$ is
defined as $\text{cut-bool}(A)$ := $\log_2|\{S \subseteq V(G) \backslash A \mid \exists X \subseteq A \colon S = (V(G) \backslash
A) \cap \bigcup_{x \in X} N(x)\}|$. Every edge $e$ in $T$ partitions the vertices $V(G)$ into $\{A_e,\overline{A_e}\}$ according
to the leaves of the two connected components of $T - e$. The booleanwidth of the above decomposition $(T,L)$ is $\max_{e
\in E(T)\;} \{ \text{cut-bool}(A_e)\}$. The booleanwidth of a graph $G$ is the minimum booleanwidth of a decomposition of $G$ as above.
Unbounded
Unbounded from booleanwidth on the complement
Unbounded from cliquewidth
Unbounded from rankwidth
branchwidth
[?] A branch decomposition of a graph $G$ is a pair $(T,\chi),ドル where $T$ is a binary tree and $\chi$ is a bijection, mapping
leaves of $T$ to edges of $G$. Any edge $\{u, v\}$ of the tree divides the tree into two components and divides the set of
edges of $G$ into two parts $X, E \backslash X,ドル consisting of edges mapped to the leaves of each component. The width of
the edge $\{u,v\}$ is the number of vertices of $G$ that is incident both with an edge in $X$ and with an edge in $E \backslash
X$. The width of the decomposition $(T,\chi)$ is the maximum width of its edges. The branchwidth of the graph $G$ is the minimum width over all branch-decompositions of $G$.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
Unbounded from rankwidth
Unbounded from treewidth
carvingwidth
[?] Consider a decomposition $(T,\chi)$ of a graph $G$ where $T$ is a binary tree with $|V(G)|$ leaves and $\chi$ is a bijection
mapping the leaves of $T$ to the vertices of $G$. Every edge $e \in E(T)$ of the tree $T$ partitions the vertices of the graph
$G$ into two parts $V_e$ and $V \backslash V_e$ according to the leaves of the two connected components in $T - e$. The width
of an edge $e$ of the tree is the number of edges of a graph $G$ that have exactly one endpoint in $V_e$ and another endpoint
in $V \backslash V_e$. The width of the decomposition $(T,\chi)$ is the largest width over all edges of the tree $T$. The
carvingwidth of a graph is the minimum width over all decompositions as above.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
Unbounded from maximum degree
Unbounded from rankwidth
Unbounded from treewidth
chromatic number
[?] The chromatic number of a graph is the minimum number of colours needed to label all its vertices in such a way that no two vertices with the
same color are adjacent.
Unbounded
Unbounded from cochromatic number
Unbounded from maximum clique
cliquewidth
[?] The cliquewidth of a graph is the number of different labels that is needed to construct the graph using the following operations:
- creation of a vertex with label $i,ドル
- disjoint union,
- renaming labels $i$ to label $j,ドル and
- connecting all vertices with label $i$ to all vertices with label $j$.
Unbounded
Unbounded from booleanwidthUnbounded from cliquewidth on the complementUnbounded from rankwidthUnbounded on
unit interval
[
1177]
Golumbic, Martin Charles; Rotics, Udi
On the clique-width of perfect graph classes (extended abstract)
.
Graph theoretic concepts in computer science. 25th international workshop, WG '99 Ascona, Switzerland, June 17-19, 1999. Proceedings.
Berlin: Springer. Lect. Notes Comput. Sci. 1665, 135-147 (1999)
cochromatic number
[?] The cochromatic number of a graph $G$ is the minimum number of colours needed to label all its vertices in such a way that that every set of vertices
with the same colour is either independent in G, or independent in $\overline{G}$.
Unbounded
cutwidth
[?] The cutwidth of a graph $G$ is the smallest integer $k$ such that the vertices of $G$ can be arranged in a linear layout $v_1,
\ldots, v_n$ in such a way that for every $i = 1, \ldots,n - 1,ドル there are at most $k$ edges with one endpoint in $\{v_1,
\ldots, v_i\}$ and the other in $\{v_{i+1}, \ldots, v_n\}$.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from carvingwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
Unbounded from maximum degree
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from treewidth
degeneracy
[?] Let $G$ be a graph and consider the following algorithm:
- Find a vertex $v$ with smallest degree.
- Delete vertex $v$ and its incident edges.
- Repeat as long as the graph is not empty.
The degeneracy of a graph $G$ is the maximum degree of a vertex when it is deleted in the above algorithm.
Unbounded
Unbounded from chromatic number
Unbounded from cochromatic number
Unbounded from maximum clique
diameter
[?] The diameter of a graph $G$ is the length of the longest shortest path between any two vertices in $G$.
Unbounded
distance to block
[?] The distance to block of a graph $G$ is the size of a smallest vertex subset whose deletion makes $G$ a block graph.
Unbounded
distance to clique
[?] Let $G$ be a graph. Its distance to clique is the minimum number of vertices that have to be deleted from $G$ in order to obtain a clique.
Unbounded
Unbounded from cochromatic number
Unbounded from diameter
Unbounded from distance to block
Unbounded from distance to cluster
Unbounded from distance to co-cluster
Unbounded from distance to cograph
Unbounded from maximum independent set
Unbounded from maximum induced matching
Unbounded from minimum clique cover
Unbounded from minimum dominating set
distance to cluster
[?] A cluster is a disjoint union of cliques. The distance to cluster of a graph $G$ is the size of a smallest vertex subset whose deletion makes $G$ a cluster graph.
Unbounded
Unbounded from diameter
Unbounded from distance to block
Unbounded from distance to co-cluster on the complement
Unbounded from distance to cograph
distance to co-cluster
[?] The distance to co-cluster of a graph is the minimum number of vertices that have to be deleted to obtain a co-cluster graph.
Unbounded
Unbounded from diameter
Unbounded from distance to cluster on the complement
Unbounded from distance to cograph
distance to cograph
[?] The distance to cograph of a graph $G$ is the minimum number of vertices that have to be deleted from $G$ in order to obtain a cograph .
Unbounded
Unbounded from diameter
Unbounded from distance to cograph on the complement
distance to linear forest
[?] The distance to linear forest of a graph $G = (V, E)$ is the size of a smallest subset $S$ of vertices, such that $G[V \backslash S]$ is a disjoint union
of paths and singleton vertices.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from distance to block
Unbounded from distance to outerplanar
Unbounded from maximum clique
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from treewidth
distance to outerplanar
[?] The distance to outerplanar of a graph $G = (V,E)$ is the minumum size of a vertex subset $X \subseteq V,ドル such that $G[V \backslash X]$ is a outerplanar graph.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
Unbounded from rankwidth
Unbounded from treewidth
genus
[?] The genus $g$ of a graph $G$ is the minimum number of handles over all surfaces on which $G$ can be embedded without edge
crossings.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from chromatic number
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
max-leaf number
[?] The max-leaf number of a graph $G$ is the maximum number of leaves in a spanning tree of $G$.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from bandwidth
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from carvingwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from cutwidth
Unbounded from degeneracy
Unbounded from distance to block
Unbounded from distance to linear forest
Unbounded from distance to outerplanar
Unbounded from maximum clique
Unbounded from maximum degree
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from treewidth
maximum clique
[?] The parameter maximum clique of a graph $G$ is the largest number of vertices in a complete subgraph of $G$.
Unbounded
maximum degree
[?] The maximum degree of a graph $G$ is the largest number of neighbors of a vertex in $G$.
Unbounded
Unbounded from acyclic chromatic numberUnbounded from chromatic numberUnbounded from cochromatic numberUnbounded from degeneracyUnbounded from maximum cliqueUnbounded on
complete
[by definition]
maximum independent set
[?] An independent set of a graph $G$ is a subset of pairwise non-adjacent vertices. The parameter maximum independent set of graph $G$ is the size of a largest independent set in $G$.
Unbounded
Unbounded from diameter
Unbounded from maximum induced matching
Unbounded from minimum dominating set
maximum induced matching
[?] For a graph $G = (V,E)$ an induced matching is an edge subset $M \subseteq E$ that satisfies the following two conditions:
$M$ is a matching of the graph $G$ and there is no edge in $E \backslash M$ connecting any two vertices belonging to edges
of the matching $M$. The parameter maximum induced matching of a graph $G$ is the largest size of an induced matching in $G$.
Unbounded
maximum matching
[?] A matching in a graph is a subset of pairwise disjoint edges (any two edges that do not share an endpoint). The parameter
maximum matching of a graph $G$ is the largest size of a matching in $G$.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from diameter
Unbounded from distance to block
Unbounded from distance to cluster
Unbounded from distance to co-cluster
Unbounded from distance to cograph
Unbounded from distance to linear forest
Unbounded from distance to outerplanar
Unbounded from maximum clique
Unbounded from maximum induced matching
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from tree depth
Unbounded from treewidth
Unbounded from vertex cover
minimum clique cover
[?] A clique cover of a graph $G = (V, E)$ is a partition $P$ of $V$ such that each part in $P$ induces a clique in $G$. The minimum clique cover of $G$ is the minimum number of parts in a clique cover of $G$. Note that the clique cover number of a graph is exactly the
chromatic number of its complement.
Unbounded
Unbounded from cochromatic number
Unbounded from diameter
Unbounded from maximum independent set
Unbounded from maximum induced matching
Unbounded from minimum dominating set
minimum dominating set
[?] A dominating set of a graph $G$ is a subset $D$ of its vertices, such that every vertex not in $D$ is adjacent to at least
one member of $D$. The parameter minimum dominating set for graph $G$ is the minimum number of vertices in a dominating set for $G$.
Unbounded
Unbounded from diameterUnbounded on
K2-free
[by definition]
pathwidth
[?] A path decomposition of a graph $G$ is a pair $(P,X)$ where $P$ is a path with vertex set $\{1, \ldots, q\},ドル and $X = \{X_1,X_2,
\ldots ,X_q\}$ is a family of vertex subsets of $V(G)$ such that:
- $\bigcup_{p \in \{1,\ldots ,q\}} X_p = V(G)$
- $\forall\{u,v\} \in E(G) \exists p \colon u, v \in X_p$
- $\forall v \in V(G)$ the set of vertices $\{p \mid v \in X_p\}$ is a connected subpath of $P$.
The width of a path decomposition $(P,X)$ is max$\{|X_p| - 1 \mid p \in \{1,\ldots ,q\}\}$. The pathwidth of a graph $G$ is the minimum width among all possible path decompositions of $G$.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from maximum clique
Unbounded from rankwidth
Unbounded from treewidth
rankwidth
[?] Let $M$ be the $|V| \times |V|$ adjacency matrix of a graph $G$. The cut rank of a set $A \subseteq V(G)$ is the rank of the
submatrix of $M$ induced by the rows of $A$ and the columns of $V(G) \backslash A$. A rank decomposition of a graph $G$ is
a pair $(T,L)$ where $T$ is a binary tree and $L$ is a bijection from $V(G)$ to the leaves of the tree $T$. Any edge $e$ in
the tree $T$ splits $V(G)$ into two parts $A_e, B_e$ corresponding to the leaves of the two connected components of $T - e$.
The width of an edge $e \in E(T)$ is the cutrank of $A_e$. The width of the rank-decomposition $(T,L)$ is the maximum width
of an edge in $T$. The rankwidth of the graph $G$ is the minimum width of a rank-decomposition of $G$.
Unbounded
Unbounded from booleanwidth
Unbounded from cliquewidth
Unbounded from rankwidth on the complement
tree depth
[?] A tree depth decomposition of a graph $G = (V,E)$ is a rooted tree $T$ with the same vertices $V,ドル such that, for every edge
$\{u,v\} \in E,ドル either $u$ is an ancestor of $v$ or $v$ is an ancestor of $u$ in the tree $T$. The depth of $T$ is the maximum
number of vertices on a path from the root to any leaf. The tree depth of a graph $G$ is the minimum depth among all tree depth decompositions.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from diameter
Unbounded from maximum clique
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from treewidth
treewidth
[?] A tree decomposition of a graph $G$ is a pair $(T, X),ドル where $T = (I, F)$ is a tree, and $X = \{X_i \mid i \in I\}$ is a
family of subsets of $V(G)$ such that
- the union of all $X_i,ドル $i \in I$ equals $V,ドル
- for all edges $\{v,w\} \in E,ドル there exists $i \in I,ドル such that $v, w \in X_i,ドル and
- for all $v \in V$ the set of nodes $\{i \in I \mid v \in X_i\}$ forms a subtree of $T$.
The width of the tree decomposition is $\max |X_i| - 1$.
The treewidth of a graph is the minimum width over all possible tree decompositions of the graph.
Unbounded
Unbounded from acyclic chromatic numberUnbounded from book thicknessUnbounded from booleanwidthUnbounded from branchwidthUnbounded from chromatic numberUnbounded from cliquewidthUnbounded from cochromatic numberUnbounded from degeneracyUnbounded from maximum cliqueUnbounded from rankwidthUnbounded on
complete
[by definition]
vertex cover
[?] Let $G$ be a graph. Its vertex cover number is the minimum number of vertices that have to be deleted in order to obtain an independent set.
Unbounded
Unbounded from acyclic chromatic number
Unbounded from book thickness
Unbounded from booleanwidth
Unbounded from branchwidth
Unbounded from chromatic number
Unbounded from cliquewidth
Unbounded from cochromatic number
Unbounded from degeneracy
Unbounded from diameter
Unbounded from distance to block
Unbounded from distance to cluster
Unbounded from distance to co-cluster
Unbounded from distance to cograph
Unbounded from distance to linear forest
Unbounded from distance to outerplanar
Unbounded from maximum clique
Unbounded from maximum induced matching
Unbounded from maximum matching
Unbounded from pathwidth
Unbounded from rankwidth
Unbounded from tree depth
Unbounded from treewidth
Problems
Problems in italics have no summary page and are only listed when
ISGCI contains a result for the current class.
Parameter decomposition
book thickness decomposition
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff the book thickness of G is at most k.
Unknown to ISGCI
booleanwidth decomposition
[?]
Input:
A graph G in this class.
Output:
An expression that constructs G according to the rules for booleanwidth, using only a constant number of labels.
Undefined if this class has unbounded booleanwidth.
Polynomial
cliquewidth decomposition
[?]
Input:
A graph G in this class.
Output:
An expression that constructs G according to the rules for cliquewidth, using only a constant number of labels.
Undefined if this class has unbounded cliquewidth.
Unknown to ISGCI
cutwidth decomposition
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff the cutwidth of G is at most k.
Unknown to ISGCI
treewidth decomposition
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff the treewidth of G is at most k.
Polynomial
Polynomial on
circle
[
119]
H.L. Bodlaender
A tourist guide through treewidth
Acta Cybernetica 11 1993 1--23
Polynomial on
circular arc
[
119]
H.L. Bodlaender
A tourist guide through treewidth
Acta Cybernetica 11 1993 1--23
Unweighted problems
3-Colourability
[?]
Input:
A graph G in this class.
Output:
True iff each vertex of G can be assigned one colour out of 3 such that whenever two vertices are adjacent, they have different colours.
Polynomial
Polynomial from ColourabilityPolynomial on
(X91,claw)-free
[
1663]
M. Kaminski, V. Lozin
Vertex 3-colorability of claw-free graphs
Algorithmic Operations Research Vol.2 15-21 (2007)
Polynomial on
circular arc
[
1438]
M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou
The complexity of coloring circular arcs and chords
SIAM J. on Algebraic and Discrete Methods 1 No.2 216-227 (1980)
Clique
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff G contains a set S of pairwise adjacent vertices, with |S| >= k.
Linear
Linear from Weighted cliquePolynomial from Independent set on the complementPolynomial from Weighted cliquePolynomial [$O(V log^2 V)$]
on
circle
[
1466]
A. Tiskin
Fast distance multiplication of unit-Monge matrices
Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms SODA 1287-1296 (2010)
Clique cover
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff the vertices of G can be partitioned into k sets Si, such that whenever two vertices are in the same set Si, they are adjacent.
Linear
Polynomial from Colourability on the complementLinear on
circular arc
[
1158]
Hsu, Wen-Lian; Tsai, Kuo-Hui
Linear time algorithms on circular-arc graphs.
Inf. Process. Lett. 40, No.3, 123-129 (1991)
Colourability
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff each vertex of G can be assigned one colour out of k such that whenever two vertices are adjacent, they have different colours.
Polynomial
Polynomial on
proper circular arc
[
1430]
B. Bhattacharya, P. Hell, J. Huang
A linear algorithm for maximum weight cliques in proper circular arc graphs
SIAM J. Discrete Math. 9 No. 2 274-289 (1996)
Domination
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff G contains a set S of vertices, with |S| <= k, such that every vertex in G is either in S or adjacent to a vertex in S.
Linear
Linear on
circular arc
[
1143]
M.S. Chang
Efficient algorithms for the domination problems on interval and circular-arc graphs.
SIAM J. Comput. 27, No.6, 1671-1694 (1998)
[
1158]
Hsu, Wen-Lian; Tsai, Kuo-Hui
Linear time algorithms on circular-arc graphs.
Inf. Process. Lett. 40, No.3, 123-129 (1991)
Polynomial [$O(VE)$]
on
(claw,net)-free
[
1127]
A. Brandstaedt, F. Dragan
On linear and circular structure of (claw, net)-free graph
To appear in Discrete Appl. Math.
Feedback vertex set
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff G contains a set S of vertices, with |S| <= k, such that every cycle in G contains a vertex from S.
Polynomial
Polynomial from Weighted feedback vertex setPolynomial on
circular arc
[
995]
J.P. Spinrad
Efficient graph representations
American Mathematical Society, Fields Institute Monograph Series 19 (2003)
Graph isomorphism
[?]
Input:
Graphs G and H in this class
Output:
True iff G and H are isomorphic.
Linear
Linear on
concave-round
[
1773]
A.R. Curtis, M.C. Lin, R.M. McConnell, Y. Nussbaum, F.J. Soulignac, J.P. Spinrad, J.L. Szwarcfiter
Isomorphism of graph classes related to the circular-ones property
DMTCS 15 No. 1 157-182 (2013)
Linear on
proper circular arc
[
1646]
M.C. Lin, F. Soulignac, J.L. Szwarcfiter
A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs
LNCS 5124 355-366 (2008)
Linear on
proper circular arc
[
1773]
A.R. Curtis, M.C. Lin, R.M. McConnell, Y. Nussbaum, F.J. Soulignac, J.P. Spinrad, J.L. Szwarcfiter
Isomorphism of graph classes related to the circular-ones property
DMTCS 15 No. 1 157-182 (2013)
Hamiltonian cycle
[?]
Input:
A graph G in this class.
Output:
True iff G has a simple cycle that goes through every vertex of the graph.
Linear
Linear on
(claw,net)-free
[
1610]
A. Brandstaedt, F.F. Dragan, E. Koehler
Linear time algorithms for the Hamiltonian problems on (claw,net)-free graphs
SIAM J. Computing 30 1662-1677 (2000)
Polynomial [$O(V \Delta(G))$]
on
circular arc
[
1536]
R.-W. Hung, M.-S. Chang, C.-H. Laio
The Hamiltonian cycle problem on circular-arc graphs
Proc. of the International MultiConference of Engineers and Computer Scientists IMECS 2009
Polynomial [$O(V^2 \log V)$]
on
circular arc
[
1527]
W.K. Shih, T.C. Chen, W.L. Hsu
An O(n^2 log n) algorithm for the Hamiltonian cycle problem on circular-arc graphs
SIAM J. Comput. 21 No.6 1026-1046 (1992)
Polynomial on
(claw,net)-free
[
344]
D. Duffus, R.J. Gould, M.S. Jacobson
Forbidden subgraphs and the Hamiltonian theme.
The theory and applications of graphs, 4th int. Conf., Kalamazoo/Mich. 1980, 297-316 (1981).
Hamiltonian path
[?]
Input:
A graph G in this class.
Output:
True iff G has a simple path that goes through every vertex of the graph.
Linear
Linear on
(claw,net)-free
[
1610]
A. Brandstaedt, F.F. Dragan, E. Koehler
Linear time algorithms for the Hamiltonian problems on (claw,net)-free graphs
SIAM J. Computing 30 1662-1677 (2000)
Polynomial [$O(V^4)$]
on
circular arc
[
1543]
G.B. Mertzios, I. Bezakova
Computing and counting longest paths on circular-arc graphs in polynomial time
Discrete Appl. Math, in press
Polynomial on
(claw,net)-free
[
344]
D. Duffus, R.J. Gould, M.S. Jacobson
Forbidden subgraphs and the Hamiltonian theme.
The theory and applications of graphs, 4th int. Conf., Kalamazoo/Mich. 1980, 297-316 (1981).
Independent set
[?]
Input:
A graph G in this class and an integer k.
Output:
True iff G contains a set S of pairwise non-adjacent vertices, such that |S| >= k.
Linear
Polynomial from Clique on the complementPolynomial from Weighted independent setLinear [$O(n)$]
on
circular arc
[
1105]
M.C. Golumbic, P.L Hammer
Stability in circular arc graphs.
J. Algorithms 9 (1988) 56-63
[
1106]
W.L. Hsu, J.P. Spinrad
Independent sets in circular arc graphs
J. Algorithms 19 (1995) 145-160
[
1158]
Hsu, Wen-Lian; Tsai, Kuo-Hui
Linear time algorithms on circular-arc graphs.
Inf. Process. Lett. 40, No.3, 123-129 (1991)
Polynomial on
(E,P)-free
[
1305]
M.U. Gerber, V.V. Lozin
Robust algorithms for the stable set problem
Graphs and Combin., to appear
Polynomial on
(P,T2)-free
[
1305]
M.U. Gerber, V.V. Lozin
Robust algorithms for the stable set problem
Graphs and Combin., to appear
Polynomial on
(P,star1,2,5)-free
[
1349]
V.L. Lozin, M. Milanic
On finding augmenting graphs
Rutcor Research Report 28-2005
Polynomial [$O(V min(d,\alpha))$]
on
circle
[
1465]
N. Nash, D. Gregg
An output sensitive algorithm for computing a maximum independent set of a circle graph
Inform. Process. Lett. 110 No.16 630-634 (2010)
Polynomial [$O(VE)$]
on
(claw,net)-free
[
1127]
A. Brandstaedt, F. Dragan
On linear and circular structure of (claw, net)-free graph
To appear in Discrete Appl. Math.
[
515]
P.L. Hammer, N.V.R. Mahadev, D. de Werra
The struction of a graph: application to CN--free graphs
Combinatorica 5 1985 141--147
Polynomial on
claw-free
[
947]
N. Sbihi
Algorithme de recherche d'un stable de cardinalit\'e maximum dans un graphe sans \'etoile
Discrete Math. 29 1980 53--76
Maximum cut
[?] (decision variant)
Input:
A graph G in this class and an integer k.
Output:
True iff the vertices of G can be partitioned into two sets A,B such that there are at least k edges in G with one endpoint in A and the other endpoint in B.
Unknown to ISGCI
Monopolarity
[?]
Input:
A graph G in this class.
Output:
True iff G is monopolar.
Polynomial
Polynomial [$O(V^4)$]
on
(5-pan,T2,X172)-free
[
1764]
V.B. Le, R. Nevries
Complexity and algorithms for recognizing polar and monopolar graphs
Theoretical Computer Science 528 1-11 (2014)
Polynomial [$O(V^3)$]
on
claw-free
[
1768]
R. Churchley, J. Huang
On the polarity and monopolarity of graphs
J. Graph Theory 76 No. 2 1138-148 (2014)
Polarity
[?]
Input:
A graph G in this class.
Output:
True iff G is polar.
Unknown to ISGCI
Recognition
[?]
Input:
A graph G.
Output:
True iff G is in this graph class.
Linear
Linear on
proper circular arc
[
1037]
A.C. Tucker
Matrix characterizations of circular--arc graphs
Pacific J. Math. 39 1971 535--545
[
301]
X. Deng, P. Hell, J. Huang
Linear time representation algorithms for proper circular arc graphs and proper interval graphs
SIAM J. Computing 25 1996 390--403
[
536]
P. Hell, J. Bang--Jensen, J. Huang
Local tournaments and proper circular arc graphs
{\sl Intern. Symp. SIGAL},Lecture Notes in Comp. Sci. 450 1990 101--108
Polynomial on
proper circular arc
[
1647]
L.N. Grippo, M.D. Safe
On circular-arc graphs having a model with no three arcs covering the circle
Anais do XLIV Simpósio Brasileiro de Pesquisa Operacional, 4093-4104 (2012)
Weighted problems
Weighted clique
[?]
Input:
A graph G in this class with weight function on the vertices and a real k.
Output:
True iff G contains a set S of pairwise adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
Linear
Polynomial from Weighted independent set on the complementLinear on
proper circular arc
[
1430]
B. Bhattacharya, P. Hell, J. Huang
A linear algorithm for maximum weight cliques in proper circular arc graphs
SIAM J. Discrete Math. 9 No. 2 274-289 (1996)
Polynomial on
alternation
[
1598]
M.M. Halldorson, S. Kitaev, A. Pyatkin
Alternation graphs
Proceedings of WG 2011, Lecture Notes in Computer Science 6986, 191-202 (2011)
Polynomial [$O(V^2 + E \log \log V)$]
on
circle
[
1429]
W.-L. Hsu
Maximum weight clique algorithms for circular-arc graphs and circle graphs
SIAM J. Computing 14 No.1 224-231 (1985)
Polynomial [$O(V^2 \log V)$]
on
circle-trapezoid
Polynomial [$O(VE)$]
on
circular arc
[
1429]
W.-L. Hsu
Maximum weight clique algorithms for circular-arc graphs and circle graphs
SIAM J. Computing 14 No.1 224-231 (1985)
[
453]
M.C. Golumbic
Algorithmic Graph Theory and Perfect Graphs
Academic Press, New York 1980
Polynomial on
interval filament
[
1159]
F. Gavril
Maximum weight independent sets and cliques in intersection graphs of filaments.
Information Processing Letters 73(5-6) 181-188 (2000)
Weighted feedback vertex set
[?]
Input:
A graph G in this class with weight function on the vertices and a real k.
Output:
True iff G contains a set S of vertices, such that the sum of the weights of the vertices in S is at most k and every cycle in G contains a vertex from S.
Polynomial
Polynomial on
circle
[
1585]
F. Gavril
Minimum weight feedback vertex sets in circle graphs
Information Proc. Lett. 107 No.1 1-6 (2008)
Polynomial [$O(V^{2n+5})$]
on
circle-n-gon, fixed n
Weighted independent set
[?]
Input:
A graph G in this class with weight function on the vertices and a real k.
Output:
True iff G contains a set S of pairwise non-adjacent vertices, such that the sum of the weights of the vertices in S is at least k.
Polynomial
Polynomial on
K2 ∪ claw-free
[
1290]
V. Lozin, R. Mosca
Independent sets and extensions of 2K_2-free graphs
Discrete Appl. Math. 146 74-80 (2005)
Polynomial [$O(V^2)$]
on
circle
[
1121]
A. Apostolico, M.J. Atallah, S.E. Hambrusch
New clique and independent set algorithms for circle graphs.
Discrete Appl. Math 36 (1992) 1-24 Erratum: Discrete Appl. Math 41 (1993) 179-180
Polynomial [$O(V^2)$]
on
circle-trapezoid
Polynomial [$O(ln)$]
on
circular arc
Polynomial [$O(V^2 \log \log V)$]
on
circular trapezoid
Polynomial on
claw-free
[
783]
G.J. Minty
On maximal independent sets of vertices in claw--free graphs
J. Comb. Theory (B) 28 1980 284--304
Polynomial on
fork-free
[
1099]
V.E. Alekseev
A polynomial algorithm for finding maximum independent sets in fork-free graphs
Discrete Ann. Operation Res., Ser. 1 6 (1999) 3-19 (in Russian)
Polynomial on
interval filament
[
1159]
F. Gavril
Maximum weight independent sets and cliques in intersection graphs of filaments.
Information Processing Letters 73(5-6) 181-188 (2000)
Polynomial on
(n+4)-pan-free
[
1447]
A. Brandstaedt, V.V. Lozin, R. Mosca
Independent sets of maximum weight in apple-free graphs
SIAM J. Discrete Math. Vol.24 No.1 239-254 (2010)
Polynomial on
subtree overlap
[
1123]
E. Cenek, L. Stewart
Maximum independent set and maximum clique algorithms for overlap graphs
Discrete Appl. Math. 131, No.1 77-91 (2003)
Weighted maximum cut
[?]
(decision variant)
Input:
A graph G in this class with weight function on the edges and a real k.
Output:
True iff the vertices of G can be partitioned into two sets A,B such that the sum of weights of the edges in G with one endpoint in A and the other endpoint in B is at least k.
NP-complete
NP-complete on
2K1-free
[
1676]
M. Kaminski
Max-cut and containment relations in graphs
Proceedings of WG 2010, Lecture Notes in Computer Science 6410, 15-26 (2010)
NP-complete on
P3-free
[
1676]
M. Kaminski
Max-cut and containment relations in graphs
Proceedings of WG 2010, Lecture Notes in Computer Science 6410, 15-26 (2010)