ISGCI logo
Information System on Graph Classes and their Inclusions
Find class
Global
ISGCI home
Java
All classes
References
Smallgraphs
✉
This problem
Linear
Polynomial
GI-complete
NP-hard
NP-complete
coNP-complete
Open
Unknown
Problem: Colourability
Definition:
Input: A graph
G
in this class and an integer
k
.
Output: True iff each vertex of
G
can be assigned one colour out of
k
such that whenever two vertices are adjacent, they have different colours.
Linear
(0,2)-colorable
(0,2)-colorable ∩ chordal
(0,2)-graph ∩ bipartite
(0,3)-colorable
(0,3)-colorable ∩ chordal
(1,1)-colorable
(1,2)-colorable ∩ chordal
(1,2)-polar ∩ chordal
1-DIR
1-bounded bipartite
1-bounded tripartite
(2,0)-colorable ∩ chordal
(2,2)-colorable ∩ chordal
2-bounded bipartite
2-connected ∩ (4-fan,C
n+4
,K
5
- e,S
3
,
H
,
K
3
∪ 2K
1
)-free
2-connected ∩ cubic ∩ planar
2-connected ∩ linearly convex triangular grid graph
2-leaf power
2-subdivision
2-subdivision ∩ planar
2-terminal series-parallel
2-tree
2-tree ∩ probe interval
(2C
4
,3K
2
,C
6
,E,P
2
∪ P
4
,P
6
,X
25
,X
26
,X
27
,X
28
,X
29
,odd-cycle)-free
2K
1
-free
(2K
2
,3K
1
,C
4
,P
4
)-free
(2K
2
,3K
1
,P
3
)-free
(2K
2
,A,C
5
,
2P
3
,
X
170
,house)-free
(2K
2
,C
4
,C
5
,H,S
3
,X
160
,
X
159
,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,X
159
,X
160
,
H
,co-rising sun,net)-free
(2K
2
,C
4
,C
5
,S
3
,claw,net)-free
(2K
2
,C
4
,C
5
,S
3
,co-claw,net)-free
(2K
2
,C
4
,C
5
,S
3
,co-rising sun,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,co-rising sun,net)-free
(2K
2
,C
4
,C
5
,S
3
,net,rising sun)-free
(2K
2
,C
4
,C
5
,S
3
,net)-free
(2K
2
,C
4
,C
5
,claw,diamond)-free
(2K
2
,C
4
,C
5
,co-claw,co-diamond)-free
(2K
2
,C
4
,C
5
,co-sun)-free
(2K
2
,C
4
,C
5
,sun)-free
(2K
2
,C
4
,C
5
)-free
(2K
2
,C
4
,P
4
,triangle)-free
(2K
2
,C
4
,P
4
)-free
(2K
2
,C
5
,S
3
,X
159
,X
160
,X
161
,X
162
,X
46
,X
70
,
2P
3
,
3K
2
,
H
,
P
2
∪ P
4
,
X
1
,co-rising sun,house,net)-free
(2K
2
,C
5
,triangle)-free
(2K
2
,K
3,3
,K
3,3
+e,P
4
,
2P
3
)-free
(2K
2
,P
3
,triangle)-free
(2K
2
,P
3
)-free
(2K
2
,P
4
,
2P
3
)-free
(2K
2
,P
4
,co-dart)-free
(2K
2
,P
4
,co-diamond,co-paw)-free
(2K
2
,P
4
)-free
2K
2
-free ∩ bipartite
2K
2
-free ∩ probe trivially perfect
(2K
3
+ e,A,C
5
,C
6
,E,H,K
3,3
-e,P
6
,R,S
3
,X
166
,X
167
,X
168
,X
169
,X
170
,X
171
,X
172
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,X
96
,X
98
,
A
,
C
6
,
E
,
H
,
P
6
,
R
,
X
166
,
X
167
,
X
168
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
96
,
X
98
,antenna,co-antenna,co-cross,co-domino,co-fish,co-twin-house,cross,domino,fish,net,twin-house)-free
(2K
3
+ e,A,C
5
,C
6
,E,K
3,3
-e,P
6
,R,X
166
,X
167
,X
169
,X
170
,X
171
,X
172
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,X
98
,
A
,
C
6
,
E
,
P
6
,
R
,
X
166
,
X
167
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
98
,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
(2K
3
,2P
3
,C
4
,K
3
∪ P
3
,P
4
)-free
(2K
3
,2P
3
,C
n+4
,K
3
∪ P
3
)-free
(2K
3
,C
n+4
)-free
(2P
3
,3K
2
,C
4
,C
5
,H,P
2
∪ P
4
,P
5
,S
3
,X
1
,X
160
,
X
159
,
X
161
,
X
162
,
X
46
,
X
70
,net,rising sun)-free
(2P
3
,C
4
,C
5
,P
5
,X
170
,
A
)-free
(2P
3
,C
4
,P
4
)-free
(2P
3
,P
4
)-free
3-leaf power
3-tree
3-tree ∩ planar
(3K
1
,C
4
,C
5
)-free
(3K
1
,C
4
,
P
3
)-free
(3K
1
,C
5
,
C
6
,
P
6
)-free
(3K
1
,P
3
)-free
(3K
1
,P
4
)-free
(3K
1
,
P
3
)-free
(3K
2
,C
4
∪ P
2
,C
5
,P
2
∪ P
4
,P
5
,S
3
,X
1
,X
46
,X
70
,
3K
2
,
C
4
∪ P
2
,
P
2
∪ P
4
,
X
1
,
X
46
,
X
70
,co-fish,co-rising sun,fish,house,net,rising sun)-free
(3K
2
,C
5
,P
2
∪ P
4
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
,net)-free
(3K
2
,C
6
,P
7
,X
164
,X
165
,odd-cycle,sunlet
4
)-free
(3K
3
,C
n+4
)-free
(3P
3
,C
n+4
,P
3
∪ P
4
,P
5
,X
102
,X
180
,X
181
,X
182
,X
183
,
A
)-free
3d grid
(4-fan,C
n+4
,K
5
- e,S
3
,X
100
,X
101
,X
102
,
H
,
K
3
∪ 2K
1
)-free
(4-fan,C
n+4
,K
5
- e,S
3
,
H
,
K
3
∪ 2K
1
)-free
4-leaf power
(4K
1
,P
4
)-free
(5,1)
5-leaf power
5-leaf power ∩ distance-hereditary
(6,1)-chordal ∩ bipartite
(6,2)
(6,2)-chordal ∩ bipartite
(A,C
5
,P
5
,
A
,house,parachute,parapluie)-free
(A,H,K
3,3
,K
3,3
-e,T
2
,X
18
,X
45
,domino,triangle)-free
(A,H,K
3,3
,X
45
,triangle)-free
(A,T
2
,odd-cycle)-free
(A,
3P
3
,
C
n+4
,
P
3
∪ P
4
,
X
102
,
X
180
,
X
181
,
X
182
,
X
183
,house)-free
AC
AT-free ∩ bipartite
AT-free ∩ chordal
Apollonian network
B
0
-VPG ∩ bipartite
B
0
-VPG ∩ chordal
B
0
-VPG ∩ strongly chordal
B
1
-CPG ∩ triangle-free
BW
3
-free ∩ modular
(C
4
∪ P
2
,C
5
,C
6
,K
2
∪ K
3
,K
2,3
,P
6
,W
4
,X
18
,X
5
,X
84
,
C
4
∪ P
2
,
C
6
,
P
6
,
W
4
,
X
18
,
X
5
,
X
84
,antenna,co-antenna,co-domino,co-fish,domino,fish)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,K
1,4
,X
85
,triangle)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,X
85
,triangle)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,H,X
85
,triangle)-free ∩ K
1,4
-free
(C
4
,C
5
,C
6
,C
7
,C
8
,K
1,4
,K
5
,K
5
- e,
K
3
∪ 2K
1
,
P
3
∪ 2K
1
,
claw ∪ K
1
,butterfly,cricket,dart,gem)-free
(C
4
,C
5
,C
6
,C
7
,C
8
,K
1,4
,K
5
,K
5
- e,
K
3
∪ 2K
1
,
P
3
∪ 2K
1
,
claw ∪ K
1
,butterfly,cricket,dart,gem)-free ∩ planar
(C
4
,C
5
,C
6
,C
7
,C
8
)-free ∩ maximum degree 3 ∩ planar
(C
4
,C
6
,C
8
,K
1,4
,odd-cycle)-free
(C
4
,C
6
,C
8
,K
1,4
,odd-cycle)-free ∩ planar
(C
4
,C
6
,odd-cycle)-free
(C
4
,P
4
,dart)-free
(C
4
,P
4
,diamond,paw)-free
(C
4
,P
4
)-free
(C
4
,
P
3
,triangle)-free
(C
4
,
P
3
)-free
(C
4
,triangle)-free ∩ planar
C
4
-free ∩ C
6
-free ∩ bipartite
C
4
-free ∩ co-comparability
C
4
-free ∩ induced-hereditary pseudo-modular
(C
5
,C
6
∪ K
1
,C
7
,K
3,3
∪ K
1
,K
3,3
-e ∪ K
1
,
K
5
- e
,domino ∪ K
1
,triangle)-free
(C
5
,C
6
,P
6
,X
17
,X
18
,X
5
,X
98
,
C
6
,
P
6
,antenna,domino)-free
(C
5
,C
6
,P
6
,triangle)-free
(C
5
,K
2
∪ K
3
,K
2,3
,P,P
2
∪ P
3
,P
5
,
P
,
P
2
∪ P
3
,co-fork,fork,house)-free
(C
5
,P,P
5
,S
3
,
P
,co-fork,fork,house,net)-free
(C
5
,P,P
5
,
P
,co-fork,fork,house)-free
(C
5
,P,P
5
,
P
,house)-free
(C
5
,P,P
5
,house)-free
(C
5
,P
5
,
P
,house)-free
(C
5
,P
5
,co-fish,fish,house)-free
(C
5
,P
5
,house)-free
(C
5
,S
3
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
3K
2
,
P
2
∪ P
4
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
(C
5
,S
3
,
3K
2
,
P
2
∪ P
4
)-free ∩ P
4
-tidy
(C
5
,XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
(C
5
,co-butterfly,co-diamond,triangle)-free
C
5
-free ∩ P
4
-extendible
C
5
-free ∩ P
4
-tidy
C
5
-free ∩ matrogenic
C
6
-free ∩ modular
(C
n+4
,H)-free
(C
n+4
,K
4
)-free
(C
n+4
,P
5
,bull)-free
(C
n+4
,P
5
,claw,gem)-free
(C
n+4
,S
3
∪ K
1
,
X
103
,claw,eiffeltower,net ∪ K
1
)-free
(C
n+4
,S
3
∪ K
1
,claw,net)-free
(C
n+4
,S
3
,claw,net)-free
(C
n+4
,S
3
,net)-free
(C
n+4
,S
3
)-free
(C
n+4
,T
2
,X
31
,XF
2
n+1
,XF
3
n
)-free
(C
n+4
,T
2
,XF
2
n+1
)-free
(C
n+4
,T
2
,net)-free
(C
n+4
,X
102
,X
204
,
P
3
∪ 2K
1
,gem)-free
(C
n+4
,X
59
,longhorn)-free
(C
n+4
,XF
1
2n+3
,XF
6
2n+2
,
X
34
,
X
36
,co-XF
2
n+1
,co-XF
3
n
)-free
(C
n+4
,
K
3
∪ 3K
1
,dart,gem)-free
(C
n+4
,bull,dart,gem)-free
(C
n+4
,claw,gem)-free
(C
n+4
,claw,net)-free
(C
n+4
,claw)-free
(C
n+4
,dart,gem)-free
(C
n+4
,diamond)-free
(C
n+4
,gem)-free
(C
n+4
,odd-sun)-free
(C
n+4
,sun)-free
C
n+4
-free
(C
n+6
,odd-cycle)-free
Dilworth 1
Dilworth 2
(E,odd-cycle)-free
(E,triangle)-free
E-free ∩ bipartite
EPT ∩ chordal
(H,triangle)-free
HHD-free ∩ co-HHD-free
HHDbicycle-free
Helly chordal
Helly chordal ∩ clique-chordal
Hilbertian
H
n,q
grid
(K
1,4
,odd-cycle)-free
(K
1,4
,odd-cycle)-free ∩ planar
(K
2
∪ K
3
,P
4
,butterfly)-free
(K
2,3
,K
4
)-minor-free
(K
2,3
,P
4
,co-butterfly)-free
K
2,3
-free ∩ hereditary modular
K
2
-free
(K
3,3
∪ K
1
,K
4
,W
4
∪ K
1
,W
5
,X
86
,X
87
,X
88
,X
89
,X
90
,
C
7
,
X
38
,
X
39
,
butterfly ∪ K
1
,co-diamond)-free
K
3
-minor-free
(K
4
,P
4
)-free
(K
4
,P
5
,W
5
,X
194
,X
86
,X
88
,X
89
,X
90
,
C
7
,
X
195
,
X
196
,
X
38
,
X
39
)-free
(K
4
,S
3
,X
36
,
C
7
,
X
175
,
X
176
,
X
42
,antenna,co-claw,net,odd-hole)-free
(K
4
,odd anti-hole,odd-hole)-free
(K
4
,odd anti-hole,odd-hole)-free ∩ dually chordal
K
4
-free ∩ dually chordal ∩ perfect
K
4
-free ∩ perfect
K
4
-minor-free
Matula perfect
Meyniel ∩ co-Meyniel
NLCT-width 1
(P
3
,triangle)-free
P
3
-free
(P
4
,
2P
3
)-free
(P
4
,co-cycle)-free
(P
4
,co-diamond,co-paw)-free
(P
4
,cycle)-free
(P
4
,diamond,paw)-free
(P
4
,triangle)-free
P
4
-extendible ∩ P
4
-sparse
P
4
-free
P
4
-free ∩ starlike
P
4
-laden
P
4
-lite
P
4
-reducible
P
4
-sparse
P
4
-tidy ∩ (S
3
,
3K
2
,
E
,
P
2
∪ P
4
,odd anti-hole,odd-hole)-free
P
4
-tidy ∩ balanced
P
4
-tidy ∩ hereditary clique-Helly ∩ perfect
P
4
-tidy ∩ perfect
(P
5
,bull)-free ∩ interval
(P
5
,triangle)-free
P
5
-free ∩ tripartite
(P
6
,X
10
,X
11
,X
12
,X
13
,X
14
,X
15
,X
5
,X
6
,X
7
,X
8
,X
9
,
C
6
,
P
6
,antenna,hole)-free
P
6
-free ∩ chordal bipartite
P
6
-free ∩ tripartite
(P
7
,odd-cycle,star
1,2,3
,sunlet
4
)-free
(P
7
,odd-cycle,star
1,2,3
)-free
(P
7
,odd-cycle)-free
P
7
-free ∩ bipartite
PURE-2-DIR
PURE-3-DIR
(S
3
,claw,net)-free ∩ chordal
(S
3
,net)-free ∩ chordal
(S
3
,net)-free ∩ split
S
3
-free ∩ chordal
SC 2-tree
SC 3-tree
SC k-tree, fixed k
(T
2
,X
2
,X
3
,hole,triangle)-free
(T
2
,X
205
,X
206
,X
207
,X
208
,even-hole,odd-cycle)-free
(T
2
,cycle)-free
(T
3
,X
81
,cycle)-free
(T
3
,cycle)-free
V-perfect
Welsh-Powell perfect
X-chordal
X-chordal ∩ X-conformal
X-conformal
X-conformal ∩ bipartite ∩ hereditary X-chordal
X-star-chordal
(X
177
,odd-cycle)-free
(X
79
,X
80
)-free ∩ modular
(XC
11
,odd-cycle)-free
(XC
11
,odd-cycle)-free ∩ planar
(XC
12
,cycle)-free
(XC
12
,triangle)-free
(XC
12
,triangle)-free ∩ planar
β-perfect ∩ perfect
(
2C
4
,
3K
2
,
C
6
,
E
,
P
2
∪ P
4
,
P
6
,
X
25
,
X
26
,
X
27
,
X
28
,
X
29
,odd anti-cycle)-free
(
3K
2
,odd-hole,paw)-free
(
C
n+4
,bull,house)-free
(
C
n+4
,co-claw,co-gem,house)-free
(
P
3
,triangle)-free
P
3
-free
τ
k
-perfect for all k >= 2
absolute bipartite retract
almost CIS
almost median
almost tree (1)
almost-split
astral triple-free
b-perfect ∩ chordal
balanced ∩ chordal
balanced ∩ paw-free
basic 4-leaf power
bi-cograph
biconvex
binary Hamming
binary tree
binary tree ∩ partial grid
bipartite
bipartite ∩ bithreshold
bipartite ∩ bounded tolerance
bipartite ∩ boxicity 2
bipartite ∩ bridged
bipartite ∩ claw-free
bipartite ∩ co-comparability
bipartite ∩ co-perfectly orderable
bipartite ∩ co-trapezoid
bipartite ∩ convex-round
bipartite ∩ cubic ∩ planar
bipartite ∩ distance-hereditary
bipartite ∩ girth>=9 ∩ maximum degree 3 ∩ planar
bipartite ∩ grid intersection
bipartite ∩ maximum degree 3
bipartite ∩ maximum degree 3 ∩ planar
bipartite ∩ maximum degree 4 ∩ planar
bipartite ∩ mock threshold
bipartite ∩ module-composed
bipartite ∩ planar
bipartite ∩ probe interval
bipartite ∩ quasi-median
bipartite ∩ tolerance
bipartite ∩ trapezoid
bipartite ∩ unit grid intersection
bipartite ∩ weakly chordal
bipartite chain
bipartite permutation
bipartite tolerance
bisplit
bisplit ∩ triangle-free
block
block duplicate
boxicity 1
cactus
caterpillar
chordal
chordal ∩ circular arc ∩ claw-free
chordal ∩ (claw,net)-free
chordal ∩ claw-free
chordal ∩ clique-Helly
chordal ∩ clique-chordal
chordal ∩ co-chordal
chordal ∩ co-chordal ∩ co-comparability ∩ comparability
chordal ∩ co-comparability
chordal ∩ cograph
chordal ∩ comparability
chordal ∩ diametral path
chordal ∩ diamond-free
chordal ∩ distance-hereditary
chordal ∩ domination perfect
chordal ∩ domino
chordal ∩ dually chordal
chordal ∩ gem-free
chordal ∩ hamiltonian
chordal ∩ hamiltonian ∩ planar
chordal ∩ hereditary clique-Helly
chordal ∩ hereditary dominating pair
chordal ∩ irredundance perfect
chordal ∩ maximal planar
chordal ∩ neighbourhood perfect
chordal ∩ odd-sun-free
chordal ∩ planar
chordal ∩ probe diamond-free
chordal ∩ proper circular arc
chordal ∩ sun-free
chordal ∩ unipolar
chordal ∩ unit circular arc
chordal bipartite
circular arc ∩ cograph
circular convex bipartite
(claw ∪ 3K
1
,odd-cycle)-free
(claw,odd anti-hole)-free ∩ tripartite
(claw,odd-cycle)-free
(claw,odd-hole)-free ∩ tripartite
claw-free ∩ interval
claw-free ∩ odd anti-hole-free ∩ tripartite
claw-free ∩ odd-hole-free ∩ tripartite
clique graphs of interval
cliquewidth 2
cluster
co-bithreshold ∩ split
co-cluster
co-interval ∩ cograph
co-interval ∩ cograph ∩ interval
co-interval ∩ interval
(co-paw,triangle)-free
co-probe threshold
co-threshold tolerance
co-trivially perfect
co-trivially perfect ∩ trivially perfect
cograph
cograph ∩ interval
cograph ∩ split
comparability ∩ split
comparability graphs of arborescence orders
comparability graphs of posets of interval dimension 2, height 2
comparability graphs of series-parallel posets
comparability graphs of threshold orders
complete
complete bipartite
complete multipartite
complete split
convex
(cross,triangle)-free
cubic
cubic ∩ hamiltonian
cubic ∩ hamiltonian ∩ planar
cubic ∩ planar
cubical
cycle-free
difference
directed path
disjoint union of stars
domination perfect ∩ triangle-free
(domino,hole,odd-cycle)-free
domino-free ∩ modular
domishold
doubly chordal
dually chordal ∩ tripartite
(fork,odd-cycle)-free
(fork,triangle)-free
grid
grid graph
grid graph ∩ maximum degree 3
half
half-disk Helly
hamiltonian ∩ interval
hamiltonian ∩ split
hereditary Helly
hereditary Matula perfect
hereditary V-perfect
hereditary Welsh-Powell opposition
hereditary Welsh-Powell perfect
hereditary X-chordal
hereditary absolute bipartite retract
hereditary clique-Helly ∩ paw-free ∩ perfect
hereditary disk-Helly
hereditary dually chordal
hereditary median
hereditary modular
hereditary perfect elimination bipartite
(hole,odd-cycle)-free
homogeneously representable
hypercube
independent module-composed
indifference
indifference ∩ split
intersection graph of nested intervals
interval
interval bigraph
interval containment bigraph
isometric subgraph of a hypercube
k-path graph, fixed k
k-tree, fixed k
leaf power
leaf power ∩ min leaf power
line graphs of acyclic multigraphs
linear NLC-width 1
linear cliquewidth 2
linear interval
linearly convex triangular grid graph
lobster
locally connected ∩ triangular grid graph
matroidal
maxibrittle
maximal outerplanar
maximum degree 1
maximum degree 3
maximum degree 3 ∩ planar ∩ triangle-free
median
median ∩ planar
mock threshold ∩ split
modular
modular ∩ open-neighbourhood-Helly
(odd-cycle,star
1,2,3
,sunlet
4
)-free
(odd-cycle,star
1,2,3
)-free
odd-cycle-free
(odd-hole,paw)-free
outerplanar
partial 2-tree
partial 3d grid
partial cube
partial grid
paw-free ∩ perfect
perfect ∩ triangle-free
perfect elimination bipartite
perfectly colorable
permutation ∩ split
planar ∩ triangle-free
planar of maximum degree 3
power-chordal
premedian
probe bipartite chain
probe block
probe co-trivially perfect ∩ probe trivially perfect
probe complete
probe interval ∩ tree
probe interval bigraph
probe threshold
probe threshold ∩ split
proper chordal
proper interval
proper interval bigraph
pseudo-median ∩ triangle-free
pseudo-modular ∩ triangle-free
ptolemaic
ptolemaic ∩ weakly geodetic
quasi-threshold
restricted block duplicate
rigid circuit
rooted directed path
semi-median
semicircular
series-parallel
solid grid graph
solid triangular grid graph
split
split ∩ strongly chordal
split ∩ superperfect
split ∩ threshold signed
square of tree
star convex
starlike
starlike threshold
strictly chordal
strongly 3-colorable
strongly chordal
substar
superbrittle
superfragile
thick tree
threshold
threshold signed
tolerance ∩ tree
tolerance ∩ triangle-free
tree
tree convex
treewidth 2
triad convex
triangular grid graph
triangulated
tripartite
trivially perfect
undirected path
unicyclic
unit interval
unit interval bigraph
weak bisplit
well-partitioned chordal
back to top
Polynomial
(1,2)-polar
(2,0)-colorable
2-outerplanar
2-split ∩ perfect
2-threshold
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
,
H
,
K
1,4
,
X
85
)-free
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
,
H
,
X
85
)-free
(2K
2
,3K
1
,C
5
,
C
6
,
C
7
,
C
8
)-free
(2K
2
,3K
1
)-free
(2K
2
,C
4
)-free
(2K
2
,
C
6
,
C
8
,
K
1,4
,odd anti-cycle)-free
(2K
2
,
C
6
,odd anti-cycle)-free
(2K
2
,house)-free
(2K
2
,odd anti-hole)-free
2K
2
-free ∩ probe cograph
(2K
3
+ e,3K
1
,C
5
,
T
2
,
X
18
,
X
94
,co-domino)-free
(2K
3
+ e,C
5
,C
6
,P
6
,X
5
,
2P
4
,
A
,
C
6
,
C
7
,
E
,
P
7
,
R
,
X
1
,
X
103
,
X
5
,
X
58
,
X
84
,
X
98
,antenna,co-domino,co-rising sun,co-twin-house,domino,parachute,parapluie,rising sun,sunlet
4
)-free
(2K
3
,2K
3
+ e,2P
3
,C
5
,C
6
,C
7
,K
2,3
,K
3
∪ P
3
,W
4
,X
84
,X
95
,
A
,
C
6
,
P
6
,
X
5
,
X
98
,butterfly,co-domino,co-fish,fish)-free
(2K
3
,2K
3
+ e,3K
1
,
A
,
H
,
T
2
,
X
18
,
X
45
,co-domino)-free
(2K
3
,2P
3
,C
5
,C
6
,C
7
,K
2,3
,K
3
∪ P
3
,X
84
,
3K
2
,
C
4
∪ P
2
,
C
6
,
P
2
∪ P
4
,
P
6
,
X
18
,
X
5
,co-antenna,co-domino,co-fish)-free
(2K
3
,3K
1
,
A
,
H
,
X
45
)-free
(2P
3
,3K
2
,C
4
∪ P
2
,C
6
,K
2,3
,P
6
,X
130
,X
132
,X
134
,X
152
,X
153
,X
154
,X
155
,X
156
,X
157
,X
158
,X
18
,X
84
,
X
11
,
X
127
,
X
128
,
X
129
,
X
131
,
X
133
,
X
135
,
X
136
,
X
137
,
X
138
,
X
139
,
X
140
,
X
141
,
X
142
,
X
143
,
X
144
,
X
145
,
X
146
,
X
147
,
X
148
,
X
149
,
X
150
,
X
151
,
X
30
,
X
35
,
X
46
,co-XF
1
2n+3
,co-XF
6
2n+3
,co-antenna,co-eiffeltower,co-longhorn,domino,fish,odd anti-hole)-free
(2P
3
,triangle)-free
(2P
4
,A,C
5
,C
6
,C
7
,E,K
3,3
-e,P
7
,R,X
1
,X
103
,X
5
,X
58
,X
84
,X
98
,
C
6
,
P
6
,
X
5
,
sunlet
4
,co-antenna,co-domino,co-rising sun,domino,parachute,parapluie,rising sun,twin-house)-free
(3K
1
,C
5
,K
3
∪ K
4
,
BW
3
,
K
3,4
-e
,
T
2
,
X
18
,
X
92
,
X
93
)-free
(3K
1
,C
5
,K
5
- e,
C
6
∪ K
1
,
C
7
,
K
3,3
∪ K
1
,
K
3,3
-e ∪ K
1
,
domino ∪ K
1
)-free
(3K
1
,C
5
,
C
6
,
X
164
,
X
165
,
sunlet
4
)-free
(3K
1
,C
5
,butterfly,diamond)-free
(3K
1
,
2P
3
)-free
(3K
1
,
3K
2
)-free
(3K
1
,
C
6
)-free
(3K
1
,
E
)-free
(3K
1
,
H
)-free
(3K
1
,
K
1,5
)-free
(3K
1
,
K
2
∪ claw
)-free
(3K
1
,
P
2
∪ P
4
)-free
(3K
1
,
P
6
)-free
(3K
1
,
T
2
,
X
2
,
X
3
,anti-hole)-free
(3K
1
,
X
172
)-free
(3K
1
,
XC
12
)-free
(3K
1
,co-cross)-free
(3K
1
,co-fork)-free
(3K
1
,house)-free
(3K
1
,paw)-free
3K
1
-free
(3K
2
,A,C
4
∪ 2K
1
,E,P
2
∪ P
3
,R,
K
5
- e
,co-claw,net,odd anti-hole,twin-house)-free
(3K
2
,C
4
∪ P
2
,C
5
,C
6
,K
2
∪ K
3
,K
3,3
,K
3,3
+e,P
2
∪ P
4
,P
6
,X
18
,X
5
,
2P
3
,
C
6
,
C
7
,
X
84
,antenna,domino,fish)-free
(3K
2
,E,P
2
∪ P
4
,net,odd anti-hole,odd-hole)-free
(3K
2
,
P
,co-gem,house)-free
(3K
2
,co-paw,odd anti-hole)-free
(3K
2
,triangle)-free
(3P
3
,P
3
∪ P
4
,P
5
,X
102
,X
180
,X
181
,X
182
,X
183
,X
184
,X
185
,X
186
,X
187
,X
188
,X
189
,X
190
,X
191
,X
192
,X
193
,
5-pan
,
A
,
P
6
,co-twin-C
5
)-free
(4K
1
,C
7
,S
3
,X
175
,X
176
,X
42
,
X
36
,claw,co-antenna,net,odd anti-hole)-free
(4K
1
,K
4
)-free
(4K
1
,
C
n+4
)-free
(4K
1
,odd anti-hole,odd-hole)-free
(5,2)-chordal
(5,2)-crossing-chordal
(5,2)-odd-chordal
(5,2)-odd-crossing-chordal
(5,2)-odd-noncrossing-chordal
(6-fan,C
4
∪ P
2
,C
5
,C
6
∪ K
1
,C
7
,K
2
∪ K
3
,K
2,3
,P
2
∪ P
4
,W
4
∪ K
1
,W
6
,X
132
,X
169
,X
176
,X
18
,X
197
,X
198
,X
199
,X
200
,X
201
,X
202
,X
35
,X
84
,
C
4
∪ P
2
,
C
6
∪ K
1
,
C
7
,
P
2
∪ P
4
,
W
4
∪ K
1
,
W
6
,
X
132
,
X
169
,
X
176
,
X
18
,
X
197
,
X
198
,
X
199
,
X
200
,
X
201
,
X
35
,
X
84
,
butterfly ∪ K
1
,butterfly ∪ K
1
,co-6-fan,co-fish,fish)-free
(7,3)
(7,4)
(8,4)
(9,6)
(A,C
4
∪ 2K
1
,P
2
∪ P
3
,R,
K
5
- e
,co-claw,odd anti-hole,twin-house)-free
(A,C
5
,C
6
,K
2
∪ K
3
,K
3,3
,K
3,3
+e,K
3,3
-e,P
6
,X
5
,X
98
,
2P
3
,
C
6
,
C
7
,
W
4
,
X
84
,
X
95
,co-butterfly,co-fish,domino,fish)-free
(A,C
5
,C
6
,P
6
,domino,house)-free
(A,E,S
3
,X
1
,domino,hole,house,net,rising sun)-free
(A,P
6
,clique wheel,domino,hole,house)-free
Berge
Berge ∩ bull-free
Berge ∩ claw-free
(C
4
,odd-hole)-free
C
4
-free ∩ perfect
(C
5
,C
6
,C
7
,C
8
,P
8
,X
19
,X
20
,X
21
,X
22
,gem,house)-free
(C
5
,C
6
,P
6
,
C
6
,
P
6
,
X
17
,
X
18
,
X
5
,
X
98
,co-antenna,co-domino)-free
(C
5
,C
6
,P
6
,
C
6
,
P
6
)-free
(C
5
,P
2
∪ P
3
,house)-free
(C
5
,P
5
,
A
,
C
6
,
P
6
,co-domino)-free
(C
5
,P
5
,
C
6
,
C
7
,
C
8
,
P
8
,
X
19
,
X
20
,
X
21
,
X
22
,co-gem)-free
(C
5
,P
5
,
P
2
∪ P
3
)-free
(C
5
,P
5
,gem)-free
(C
5
,P
6
,
P
6
)-free
(C
5
,S
3
,X
11
,
3K
2
,
C
7
,
P
2
∪ P
4
,
X
173
)-free ∩ co-line
(C
5
,bull,co-gem,gem)-free
(C
5
,co-gem,gem)-free
(C
5
,co-gem,house)-free
(C
6
,K
2
∪ K
3
,X
103
,X
37
,X
88
,X
90
,
C
n+4
∪ K
1
,
T
2
,
net ∪ K
1
,co-diamond,co-domino,co-eiffeltower,co-twin-C
5
)-free
(C
6
,K
2
∪ K
3
,X
37
,X
90
,
C
n+4
∪ K
1
,
T
2
,
W
n+4
,
X
31
,co-XF
2
n+1
,co-XF
3
n
,co-domino,co-twin-C
5
)-free
(C
6
,P
6
,
P
6
,
X
10
,
X
11
,
X
12
,
X
13
,
X
14
,
X
15
,
X
5
,
X
6
,
X
7
,
X
8
,
X
9
,anti-hole,co-antenna)-free
(C
6
,S
3
,
C
n+4
∪ K
1
,
W
4
,
W
5
,co-claw,net)-free
(C
6
,
C
6
)-free murky
(C
n+4
∪ K
1
,C(n,k),W
4
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,C(n,k),X
42
,
T
2
,
X
2
,
X
3
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,S
3
∪ K
1
,X
42
,
T
2
,
X
2
,
X
3
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+4
∪ K
1
,S
3
,W
4
,W
5
,
C
6
,claw,net)-free
(C
n+4
∪ K
1
,S
3
,W
4
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,XF
2
n+1
,XF
3
n
,XF
4
n
,anti-hole,co-XF
1
2n+3
,co-XF
5
2n+3
,co-XF
6
2n+2
)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,XF
2
n+1
,XF
3
n
,XF
4
n
,co-XF
1
2n+3
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd anti-hole)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
36
,XF
1
2n+3
,XF
2
n+1
,XF
3
n
,XF
4
n
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
36
,co-XF
1
2n+3
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd anti-hole)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
36
,XF
1
2n+3
,XF
2
n+1
,XF
3
n
,XF
4
n
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
36
,co-XF
1
2n+3
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,co-XF
5
2n+3
,co-XF
6
2n+2
,odd-hole)-free
D
Dilworth 3
Dilworth 4
Gallai
Gallai-perfect
(H,K
3
∪ 2K
1
,
C
n+4
,
K
5
- e
,
X
100
,
X
101
,
X
102
,co-4-fan,net)-free
(H,K
3
∪ 2K
1
,
C
n+4
,
K
5
- e
,co-4-fan,net)-free
HH-free
HHD-free
HHDA-free
HHDG-free
HHDS-free
HHG-free
HHP-free
Halin
Helly cactus subtree ∩ perfect
Helly circular arc ∩ (
C
7
,odd-hole)-free
Helly circular arc ∩ perfect
(K
1,4
,paw)-free
(K
2
∪ K
3
,X
11
,X
127
,X
128
,X
129
,X
131
,X
133
,X
135
,X
136
,X
137
,X
138
,X
139
,X
140
,X
141
,X
142
,X
143
,X
144
,X
145
,X
146
,X
147
,X
148
,X
149
,X
150
,X
151
,X
30
,X
35
,X
46
,XF
1
2n+3
,XF
6
2n+3
,
2P
3
,
3K
2
,
C
4
∪ P
2
,
C
6
,
P
6
,
X
130
,
X
132
,
X
134
,
X
152
,
X
153
,
X
154
,
X
155
,
X
156
,
X
157
,
X
158
,
X
18
,
X
84
,antenna,co-domino,co-fish,eiffeltower,longhorn,odd-hole)-free
(K
2
∪ K
3
,X
90
,
C
n+4
∪ K
1
,
T
2
,co-domino,co-paw,co-twin-C
5
)-free
(K
2
∪ K
3
,
P
,
X
163
,
X
95
,co-diamond,house)-free
(K
2
∪ claw,triangle)-free
(K
2,3
,P,P
5
,X
163
,X
95
,diamond)-free
(K
3
∪ 3K
1
,
C
n+4
,co-dart,co-gem)-free
(K
3,3,3
,
C
n+4
)-free
(K
3,3
,K
3,3
+e,
2P
3
,
C
n+4
)-free
(K
3,3
,
C
n+4
)-free
(K
5
- e,S
3
,
3K
2
,
A
,
C
4
∪ 2K
1
,
E
,
P
2
∪ P
3
,
R
,claw,co-twin-house,odd-hole)-free
(K
5
- e,
A
,
C
4
∪ 2K
1
,
P
2
∪ P
3
,
R
,claw,co-twin-house,odd-hole)-free
(K
5
,X
126
,X
174
,
3K
2
)-minor-free
Meyniel
Meyniel ∩ weakly chordal
N
*
-perfect
(P,P
5
,S
3
,
P
,co-fork,fork,house,net)-free
(P,P
5
,
3K
2
,gem)-free
(P,P
5
,
P
,co-fork,fork,house)-free
(P,P
5
,co-fork)-free
(P,
P
,co-fork,fork)-free
(P,co-butterfly,co-fork,co-gem)-free
(P,co-fork,co-gem)-free
(P,co-gem,house)-free
(P
2
∪ P
4
,triangle)-free
(P
3
∪ 2K
1
,
C
n+4
,
X
102
,
X
204
,co-gem)-free
P
4
-brittle
P
4
-comparability
P
4
-extendible
P
4
-indifference
P
4
-simplicial
P
4
-tidy
(P
5
,S
3
,
A
,
E
,
X
1
,anti-hole,co-domino,co-rising sun,net)-free
(P
5
,S
3
,anti-hole,co-domino,co-gem)-free
(P
5
,
A
,
P
6
,anti clique wheel,anti-hole,co-domino)-free
(P
5
,
A
,anti-hole,co-domino)-free
(P
5
,
C
6
)-free ∩ weakly chordal
(P
5
,
P
,anti-hole)-free
(P
5
,
P
,gem)-free
(P
5
,anti-hole,co-bicycle,co-domino)-free
(P
5
,anti-hole,co-domino,co-gem)-free
(P
5
,anti-hole,co-domino,co-sun)-free
(P
5
,anti-hole,co-domino)-free
(P
5
,anti-hole,co-gem)-free
(P
5
,anti-hole)-free
(P
5
,bull,co-fork)-free
(P
5
,bull,house)-free
(P
5
,bull,odd anti-hole)-free
(P
5
,co-fork,house)-free
(P
5
,diamond)-free
(P
5
,fork,house)-free
(P
5
,gem)-free
P
5
-free ∩ weakly chordal
(P
6
,triangle)-free
PI
PI
*
(S
3
,T
2
,X
2
,X
3
,
C
n+4
∪ K
1
,
C(n,k)
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,T
2
,X
2
,X
3
,
C
n+4
∪ K
1
,
S
3
∪ K
1
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,T
2
,X
205
,X
206
,X
207
,X
208
,
C
n+4
∪ K
1
,
S
3
∪ K
1
,
X
42
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,
3K
2
,
E
,
P
2
∪ P
4
,odd anti-hole,odd-hole)-free
(S
3
,
3K
2
,
E
,odd-hole)-free ∩ line
(S
3
,
C
n+4
∪ K
1
,
C(n,k)
,
W
4
,even-hole,odd-cycle ∪ K
1
)-free
(S
3
,
C
n+4
,
S
3
∪ K
1
,co-claw)-free
(S
3
,
C
n+4
,
T
2
)-free
(S
3
,
C
n+4
,co-claw,net)-free
(S
3
,
C
n+4
,co-claw)-free
(S
3
,
C
n+4
,net)-free
(S
3
,net)-free ∩ extended P
4
-sparse
(W
4
,claw,gem,odd-hole)-free
(W
4
,gem)-free ∩ short-chorded
Welsh-Powell opposition
(X
103
,
C
n+4
,
S
3
∪ K
1
,
net ∪ K
1
,co-claw,co-eiffeltower)-free
(X
12
,X
5
,X
95
,X
96
,X
97
,
X
12
,
X
5
,
X
95
,
X
96
,
X
97
,
claw ∪ triangle
,claw ∪ triangle,co-cricket,co-twin-house,cricket,odd anti-hole,odd-hole,twin-house)-free
(X
172
,triangle)-free
(X
34
,X
36
,XF
2
n+1
,XF
3
n
,
C
n+4
,co-XF
1
2n+3
,co-XF
6
2n+2
)-free
(X
37
,diamond,even-cycle)-free
(XC
1
,XC
2
,XC
3
,XC
4
,XC
5
,XC
6
,XC
7
,XC
8
)-free
(XC
7
,
XC
1
,
XC
2
,
XC
3
,
XC
4
,
XC
5
,
XC
6
,
XC
8
)-free
XC
9
-free
(XF
1
2n+3
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,hole)-free
(XF
1
2n+3
,XF
5
2n+3
,XF
6
2n+2
,
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
,odd-hole)-free
(XZ
11
,XZ
12
,XZ
13
,XZ
14
,XZ
6
,XZ
7
,XZ
8
,XZ
9
,
XZ
11
,
XZ
12
,
XZ
13
,
XZ
14
,
XZ
6
,
XZ
7
,
XZ
8
,
XZ
9
)-free
β-perfect
β-perfect ∩ co-β-perfect
cal C(G)-perfect
(
3K
2
,
C
6
,
P
7
,
X
164
,
X
165
,
sunlet
4
,odd anti-cycle)-free
(
A
,
T
2
,odd anti-cycle)-free
(
C
n+3
∪ K
1
,co-diamond,co-paw)-free
(
C
n+4
,
H
)-free
(
C
n+4
,
T
2
,
X
31
,co-XF
2
n+1
,co-XF
3
n
)-free
(
C
n+4
,
T
2
,co-XF
2
n+1
)-free
(
C
n+4
,
X
59
,co-longhorn)-free
(
C
n+4
,bull,co-dart,co-gem)-free
(
C
n+4
,co-claw,co-gem)-free
(
C
n+4
,co-claw)-free
(
C
n+4
,co-dart,co-gem)-free
(
C
n+4
,co-diamond)-free
(
C
n+4
,co-gem)-free
(
C
n+4
,co-sun)-free
(
C
n+4
,net)-free
(
C
n+4
,odd co-sun)-free
C
n+4
-free
(
C
n+6
,odd anti-cycle)-free
(
E
,odd anti-cycle)-free
(
K
1,4
,co-paw)-free
(
K
1,4
,odd anti-cycle)-free
(
P
,butterfly,fork,gem)-free
(
P
,fork,gem)-free
(
P
,fork,house)-free
(
P
7
,
star
1,2,3
,
sunlet
4
,odd anti-cycle)-free
(
P
7
,
star
1,2,3
,odd anti-cycle)-free
(
P
7
,odd anti-cycle)-free
(
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,even anti-hole,odd anti-cycle)-free
(
T
2
,co-cycle)-free
(
T
3
,
X
81
,co-cycle)-free
(
T
3
,co-cycle)-free
(
W
4
,co-claw,co-gem,odd anti-hole)-free
(
X
177
,odd anti-cycle)-free
(
XC
11
,odd anti-cycle)-free
(
XC
12
,co-cycle)-free
(
claw ∪ 3K
1
,odd anti-cycle)-free
(
star
1,2,3
,
sunlet
4
,odd anti-cycle)-free
(
star
1,2,3
,odd anti-cycle)-free
absolutely perfect
absorbantly perfect
alternately colourable
alternately orientable
alternately orientable ∩ co-comparability
(anti-hole,bull,odd-hole)-free
(anti-hole,co-domino,odd anti-cycle)-free
(anti-hole,co-sun,hole)-free
(anti-hole,hole,sun)-free
(anti-hole,hole)-free
(anti-hole,odd anti-cycle)-free
(anti-hole,odd-hole)-free
b-perfect
balanced ∩ co-line
balanced ∩ line
basic perfect
biclique separable
bip
*
bipartable
bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ double split ∪ line graphs of bipartite graphs
bipartite ∪ co-bipartite ∪ co-line graphs of bipartite graphs ∪ line graphs of bipartite graphs
bipartite ∪ co-bipartite ∪ split
bipolarizable
bithreshold
bitolerance
bounded bitolerance
bounded multitolerance
bounded tolerance
boxicity 2 ∩ co-bipartite
brittle
(bull,co-fork,co-gem)-free
(bull,co-fork,fork)-free
(bull,co-gem,gem)-free
(bull,fork,gem)-free
(bull,fork,house)-free
(bull,hole,odd anti-hole)-free
(bull,house,odd-hole)-free
(bull,odd anti-hole,odd-hole)-free
bull-free ∩ perfect
charming
chordal ∪ co-chordal
chordal-perfect
circle graph with equator
circular arc ∩ co-bipartite
circular arc ∩ comparability
circular arc ∩ perfect
circular interval
circular perfect
circular permutation
(claw,co-claw)-free
(claw,diamond,odd-hole)-free
(claw,odd anti-hole,odd-hole)-free
(claw,paw)-free
claw-free ∩ mock threshold
claw-free ∩ normal Helly circular arc
claw-free ∩ perfect
clique graphs of Helly circular arc
clique graphs of normal Helly circular arc
clique separable
cliquewidth 3
cliquewidth 4
co-2-subdivision
co-Gallai
co-HHD-free
co-Matula perfect
co-Meyniel
co-P
4
-brittle
co-Welsh-Powell opposition
co-Welsh-Powell perfect
co-biclique separable
co-biconvex
co-bipartite
co-bipartite ∩ concave-round
co-bipartite ∩ normal circular arc
co-bipartite ∩ proper circular arc
co-bithreshold
co-bounded tolerance
co-chordal
co-chordal ∩ comparability
co-chordal ∩ superperfect
(co-claw,co-diamond,odd anti-hole)-free
(co-claw,co-paw)-free
(co-claw,odd anti-cycle)-free
(co-claw,odd anti-hole,odd-hole)-free
co-comparability
co-comparability ∩ comparability
co-comparability ∩ tolerance
co-comparability ∪ comparability
co-comparability graphs of dimension d posets
co-comparability graphs of posets of interval dimension 2
co-comparability graphs of posets of interval dimension 2, height 2
co-comparability graphs of posets of interval dimension d
co-cycle-free
(co-diamond,diamond)-free
(co-diamond,house)-free
(co-diamond,odd anti-hole)-free
co-forest-perfect
(co-fork,odd anti-cycle)-free
(co-gem,gem)-free
(co-gem,house)-free
co-interval
co-interval ∪ interval
co-interval bigraph
co-interval containment bigraph
co-leaf power
co-line graphs of bipartite graphs
(co-odd building,odd anti-hole)-free
(co-paw,odd anti-hole)-free
(co-paw,paw)-free
co-paw-free
co-perfectly orderable
co-probe cograph
co-proper interval bigraph
co-strongly chordal
co-tolerance
co-trapezoid
co-unipolar
co-unipolar ∪ unipolar
cograph contraction
comparability
comparability ∩ distance-hereditary
comparability ∩ weakly chordal
comparability graphs of dimension 2 posets
comparability graphs of dimension 3 posets
comparability graphs of dimension 4 posets
comparability graphs of dimension d posets
comparability graphs of posets of interval dimension 2
comparability graphs of posets of interval dimension 2, height 3
comparability graphs of posets of interval dimension d
comparability graphs of semiorders
containment graph of circles
containment graph of intervals
containment graphs
containment graphs of circular arcs
convex-round
cycle-bicolorable
d-trapezoid
(diamond,even-cycle)-free
(diamond,odd-hole)-free
diamond-free ∩ perfect
distance-hereditary
domination
(domino,gem,hole,house,net)-free
(domino,gem,house)-free ∩ pseudo-modular
double split
doubled
even-hole-free ∩ probe chordal
extended P
4
-reducible
extended P
4
-sparse
forest-perfect
generalized split
generalized strongly chordal
good
gridline
hereditary N
*
-perfect
hereditary clique-Helly ∩ line ∩ perfect
hereditary homogeneously orderable
hereditary sat
(hole,odd anti-hole)-free
hole-free ∩ planar
(house,hole,domino,sun)-free
house-free ∩ weakly chordal
i-triangulated
intersection graphs of parallelograms (squares)
k-outerplanar
kernel solvable
leaf power ∪ min leaf power
line ∩ mock threshold
line ∩ perfect
line graphs of bipartite graphs
line graphs of bipartite multigraphs
line graphs of planar cubic bipartite graphs
locally perfect
matrogenic
min leaf power
minimally imperfect
mock threshold
module-composed
multitolerance
murky
neighbourhood perfect
odd anti-cycle-free
(odd anti-hole,odd-hole)-free
(odd building,odd-hole)-free
odd-hole-free ∩ planar
odd-hole-free ∩ pretty
opposition
parallelepiped
parity
partial 3-tree
partial 3-tree ∩ planar
partial 4-tree
partial k-tree, fixed k
partner-limited
perfect
perfect ∩ planar
perfect ∩ split-neighbourhood
perfectly 1-transversable
perfectly contractile
perfectly orderable
permutation
preperfect
probe Gallai
probe HHDS-free
probe Meyniel
probe P
4
-reducible
probe P
4
-sparse
probe bipartite distance-hereditary
probe chordal
probe chordal ∩ weakly chordal
probe chordal bipartite
probe co-trivially perfect
probe cograph
probe distance-hereditary
probe interval
probe proper interval
probe ptolemaic
probe split
probe strongly chordal
probe trivially perfect
probe unit interval
proper Helly circular arc
proper circular arc
proper tolerance
pseudo-split
(q, q-3), fixed q>= 7
(q,q-4), fixed q
quasi-Meyniel
quasi-brittle
quasi-parity
quasitriangulated
semi-P
4
-sparse
semiperfectly orderable
short-chorded
skeletal
slender
slightly triangulated
slim
split-perfect
strict 2-threshold
strict quasi-parity
strong tree-cograph
strongly circular perfect
strongly orderable
strongly perfect
sun-free ∩ weakly chordal
superperfect
threshold tolerance
tolerance
totally unimodular
trapezoepiped
trapezoid
tree-cograph
tree-perfect
treewidth 3
treewidth 4
treewidth 5
unimodular
unipolar
unit Helly circular arc
unit circular arc
unit tolerance
very strongly perfect
weak bipolarizable
weakly chordal
wing-triangulated
back to top
GI-complete
back to top
NP-hard
back to top
NP-complete
(1,2)-split
1-string
(2,2)-interval
2-DIR
2-SEG
2-circular arc
2-circular track
2-connected
2-edge-connected
2-interval
2-track
(2K
2
,4K
1
,C
5
,co-diamond)-free
(2K
2
,A,H)-free
(2K
2
,C
5
)-free
(2K
2
,co-diamond)-free
(2K
2
,net)-free
2K
2
-free
(2K
3
+ e,
X
98
,house)-free
(2K
3
+ e,
X
99
,house)-free
(2K
3
+ e,house)-free
(2K
3
,2K
3
+ e,
A
,
H
,
X
45
,
XZ
5
,co-domino)-free
(2K
3
,X
42
,
A
,
H
,
X
45
,
X
46
,
X
47
,
X
48
,
X
49
,
X
50
,
X
51
,
X
52
,
X
53
,
X
54
,
X
55
,
X
56
,
X
57
)-free
(2K
3
,house)-free
(2K
4
,house)-free
2P
3
-free
3-DIR
3-Helly
3-circular track
3-interval
3-mino
3-track
(3K
2
,C
5
,C
7
,P
2
∪ P
4
,X
173
,
X
11
,net)-free
(3K
2
,C
5
,P
2
∪ P
4
,net)-free
(3K
2
,E,P
2
∪ P
4
,net)-free
(4,0)-colorable
4-colorable
(4-fan,K
1,4
,W
4
,W
5
,
A ∪ K
1
,
co-fork ∪ K
1
,
gem ∪ K
1
,
net ∪ K
1
)-free
4-regular
4-regular ∩ hamiltonian
4-regular ∩ planar
(4K
1
,net)-free
4K
1
-free
(5,2)
5-colorable
(5-pan,T
2
,X
172
)-free
5-regular
5-regular ∩ hamiltonian
5K
1
-free
(6,1)-chordal
(6,1)-even-chordal
6-colorable
6K
1
-free
7K
1
-free
(A ∪ K
1
,
K
1,4
,
W
4
,
W
5
,co-4-fan,co-fork ∪ K
1
,gem ∪ K
1
,net ∪ K
1
)-free
(A,C
4
∪ 2K
1
,P
2
∪ P
3
,R,
K
5
- e
,
W
5
,co-claw,twin-C
5
,twin-house)-free
(A,H,K
3,3
,K
3,3
-e,X
45
,XZ
5
,domino)-free
(A,H,K
3,3
,X
45
,X
46
,X
47
,X
48
,X
49
,X
50
,X
51
,X
52
,X
53
,X
54
,X
55
,X
56
,X
57
,
X
42
)-free
(A,P
6
,domino)-free
B
0
-CPG
B
0
-VPG
B
1
-CPG
B
1
-VPG
B
2
-VPG
B
3
-VPG
(BW
3
,W
5
,W
7
,X
103
,X
104
,X
105
,X
106
,X
107
,X
108
,X
109
,X
110
,X
111
,X
112
,X
113
,X
114
,X
115
,X
116
,X
117
,X
118
,X
119
,X
120
,X
121
,X
122
,X
123
,X
124
,X
125
,X
126
,X
53
,X
88
,
C
6
,
C
8
,
T
2
,
X
3
)-free
BW
3
-free
B
k
-VPG
Bouchet
(C
4
,C
5
,C
6
,C
7
,C
8
)-free
(C
4
,C
5
,C
6
,S
3
)-free
(C
4
,C
5
,K
4
,diamond)-free
(C
4
,C
5
)-free
(C
4
,S
3
)-free
(C
4
,
A
,
H
)-free
(C
4
,co-claw)-free
(C
4
,diamond)-free
(C
4
,triangle)-free
C
4
-free
(C
5
,C
6
,X
164
,X
165
,sunlet
4
,triangle)-free
(C
5
,P,
P
,bull,co-fork,gem,house)-free
(C
5
,P
5
)-free
(C
5
,S
3
,X
11
,
3K
2
,
C
7
,
P
2
∪ P
4
,
X
173
)-free
(C
5
,S
3
,
3K
2
,
P
2
∪ P
4
)-free
(C
5
,house)-free
C
5
-free
(C
6
,C
8
,T
2
,X
3
,
BW
3
,
W
5
,
W
7
,
X
103
,
X
105
,
X
106
,
X
107
,
X
108
,
X
109
,
X
110
,
X
111
,
X
112
,
X
113
,
X
114
,
X
115
,
X
116
,
X
117
,
X
118
,
X
119
,
X
120
,
X
121
,
X
122
,
X
123
,
X
124
,
X
125
,
X
126
,
X
53
,
X
88
,co-X
104
)-free
(C
6
,
C
6
)-free
(C
6
,house)-free
(C
6
,triangle)-free
C
6
-free
(C
7
,odd anti-hole)-free
CONV
CPG
C
n+6
-free
C
n+7
-free
(E,P)-free
E-free
EPT
Helly
Helly 2-acyclic subtree
Helly cactus subtree
Helly circular arc
(K
1,4
,P
5
)-free
(K
1,4
,diamond)-free
K
1,4
-free
(K
1,5
,triangle)-free
(K
2
∪ K
3
,P
5
,
X
37
,
X
38
,co-diamond,co-domino,co-twin-C
5
)-free
(K
2
∪ K
3
,
P
,anti-hole)-free
(K
2
∪ K
3
,
P
,house)-free
(K
2
∪ K
3
,co-diamond)-free
(K
2
∪ K
3
,house)-free
K
2
∪ K
3
-free
K
2
∪ claw-free
(K
2,3
,X
37
,X
38
,diamond,domino,house,twin-C
5
)-free
(K
2,3
,diamond)-free
K
2,3
-free
(K
3
∪ 2K
1
,
K
3
∪ 2K
1
,bull,co-cricket,co-dart,cricket,dart)-free
(K
3
∪ P
3
,
C
6
,
P
,
P
7
,
X
37
,
X
41
)-free
(K
3,3
,K
5
)-minor-free
(K
4,4
,P
5
)-free
(K
4
,S
3
)-free
(K
4
,claw,diamond)-free
K
4
-free
(K
5
- e,W
5
,
A
,
C
4
∪ 2K
1
,
P
2
∪ P
3
,
R
,claw,co-twin-C
5
,co-twin-house)-free
K
5
-free
K
6
-free
K
7
-free
N
*
(P,T
2
)-free
(P,co-fork)-free
(P,star
1,2,3
)-free
(P,star
1,2,4
)-free
(P,star
1,2,5
)-free
P-free
(P
2
∪ P
3
,P
3
∪ 2K
1
,X
188
,X
214
,
W
4
,
X
102
,
X
204
,
X
209
,
X
210
,
X
212
,
X
213
,
X
215
,
X
216
,
X
217
,
X
218
,
X
86
,co-gem)-free
P
2
∪ P
4
-free
P
4
-bipartite
(P
5
,X
82
,X
83
)-free
(P
5
,
X
38
,co-gem)-free
(P
5
,co-domino,co-gem)-free
(P
5
,cricket)-free
(P
5
,fork)-free
P
5
-free
(P
6
,X
30
,X
8
)-free
P
6
-free
P
7
-free
(S
3
,S
4
,net)-free
(S
3
,T
2
,X
205
,X
206
,X
207
,X
208
,
X
42
)-free
(S
3
,
3K
2
,
E
,
P
2
∪ P
4
)-free
(S
3
,
C
n+6
,
X
37
,antenna,co-claw,co-sun)-free
(S
3
,co-claw,net)-free
(S
3
,co-claw)-free
(S
3
,net)-free
(S
3
,net)-free ∩ sun-free
S
3
-free
SEG
VPG
W
2n+3
-free
(W
4
,W
5
,butterfly)-free
(W
4
,X
102
,X
204
,X
209
,X
210
,X
212
,X
213
,X
214
,X
215
,X
216
,X
217
,X
218
,X
86
,
P
2
∪ P
3
,
P
3
∪ 2K
1
,
X
188
,gem)-free
(W
4
,claw,gem)-free
(W
4
,claw)-free
(W
4
,gem)-free
W
n+4
-free
(X
30
,XZ
1
,XZ
4
,longhorn)-free
(X
38
,gem,house)-free
(X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,net)-free
(X
79
,X
80
)-free
XC
10
-free
(XC
11
,claw,diamond)-free
XC
13
-free
cal P
3
-perfect
2P
3
-free
(
5-pan
,
T
2
,
X
172
)-free
(
A
,
P
6
,co-domino)-free
BW
3
-free
C
6
-free
(
C
n+6
,
T
2
,
X
2
,
X
3
,
X
30
,
X
31
,
X
32
,
X
33
,
X
34
,
X
35
,
X
36
,
X
37
,
X
38
,
X
39
,
X
40
,
X
41
,co-XF
2
n+1
,co-XF
3
n
,co-XF
4
n
)-free
C
n+6
-free
C
n+7
-free
(
E
,
P
)-free
E
-free
(
K
1,4
,
P
,co-fork,house)-free
(
K
1,4
,co-diamond)-free
(
K
1,4
,house)-free
K
1,4
-free
K
2
∪ claw
-free
(
P
,
P
7
)-free
(
P
,
P
8
)-free
(
P
,
T
2
)-free
(
P
,
star
1,2,3
)-free
(
P
,co-star
1,2,4
)-free
(
P
,co-star
1,2,5
)-free
(
P
,fork)-free
(
P
,house)-free
P
-free
P
2
∪ P
4
-free
(
P
6
,
X
30
,
X
8
)-free
(
P
6
,co-claw)-free
P
6
-free
P
7
-free
W
2n+3
-free
(
W
4
,
W
5
,co-butterfly)-free
(
W
4
,co-claw,co-gem)-free
(
W
4
,co-claw)-free
(
W
4
,co-gem)-free
W
n+4
-free
(
X
30
,
XZ
1
,
XZ
4
,co-longhorn)-free
(
X
79
,
X
80
)-free
(
X
82
,
X
83
,house)-free
(
X
91
,co-claw)-free
XC
10
-free
XC
11
-free
XC
12
-free
XC
13
-free
(n+4)-pan
-free
odd-cycle ∪ K
1
-free
all-4-simplicial
almost claw-free
alternation
anti-hole-free
apex
balanced 2-interval
biclique-Helly
biplanar
book thickness 2
boxicity 2
building-free
(bull,co-fork)-free
(bull,house)-free
bull-free
(butterfly,gem)-free
caterpillar arboricity <= 2
circle
circle-n-gon, fixed n
circle-polygon
circle-trapezoid
circular arc
circular strip
circular trapezoid
(claw,diamond)-free
claw-free
clique graphs
clique-Helly
clique-Helly ∩ clique-chordal
clique-Helly ∩ dismantlable
clique-chordal
(co-butterfly,co-claw)-free
(co-butterfly,co-gem)-free
(co-claw,co-diamond)-free
(co-claw,house)-free
(co-claw,odd anti-hole)-free
co-claw-free
(co-cricket,house)-free
co-diamond-free
co-domino-free
(co-fork,house)-free
co-fork-free
co-gem-free
co-hereditary clique-Helly
co-interval filament
co-interval mixed
co-line
co-planar
co-quasi-line
co-sun-free
coin
cop-win
diamond-free
disk
disk contact
disk-Helly
dismantlable
domination perfect
domino
(domino,gem,house)-free
domino-free
dually chordal
even anti-hole-free
even-hole-free
even-signable
fork-free
gem-free
genus 0
genus 1
girth>=9
grid intersection
hamiltonian
hamiltonian ∩ planar
hereditary biclique-Helly
hereditary clique-Helly
hereditary maximal clique irreducible
hereditary neighbourhood-Helly
hereditary open-neighbourhood-Helly
hole-free
homogeneously orderable
house-free
interval filament
irredundance perfect
irredundance perfect with ir(G)<= 4
k-DIR
k-SEG
line
line graphs of Helly hypergraphs of rank 3
line graphs of linear hypergraphs of rank 3
line graphs of multigraphs without triangles
line graphs of triangle-free graphs
linear arboricity <= 2
linear domino
linear domino ∩ maximum degree 4
locally bipartite
locally chordal
locally connected
locally split
map
maximal clique irreducible
maximum degree 4
maximum degree 5
maximum degree 6
maximum degree 7
monopolar
(n+4)-pan-free
nK
2
-free, fixed n
nP
3
-free, fixed n
nearly bipartite
neighbourhood chordal
neighbourhood-Helly
neighbourhood-Helly ∩ triangle-free
net-free
odd anti-hole-free
odd co-sun-free
odd-cycle ∪ K
1
-free
odd-hole-free
odd-sun-free
open-neighbourhood-Helly
outer-string
overlap
(p,q<=2)-colorable
partial bar visibility
partial rectangle visibility
paw-free
perfect cochromatic
perfect connected-dominant
planar
planar of maximum degree 4
polar
pretty
probe diamond-free
pseudo-modular
quasi-line
rectangle intersection
rectangle visibility
spider graph
split-neighbourhood
strictly clique irreducible
string
strong domination perfect
subhamiltonian
subtree filament
subtree overlap
sun-free
thickness <= 2
toroidal
triangle contact
triangle-free
unit 2-circular arc
unit 2-circular track
unit 2-interval
unit 2-track
unit 3-circular track
unit 3-interval
unit 3-track
unit disk
universally signable
upper domination perfect
upper irredundance perfect
visibility
weak bar visibility
weak rectangle visibility
weakly geodetic
well covered
back to top
coNP-complete
back to top
Open
back to top
Unknown to ISGCI
(0,2)-graph
(1,2)-colorable
(2,2)-colorable
2-connected ∩ (P
6
,claw)-free
2-split
2-strongly regular
2-strongly regular ∩ planar
2-thin
(2K
2
,4K
1
,co-claw,co-diamond)-free
(2K
2
,5K
1
,C
5
,K
3
∪ 2K
1
,P
3
∪ 2K
1
,
C
6
,
C
7
,
C
8
,
K
1,4
,
K
5
- e
,claw ∪ K
1
,co-butterfly,co-cricket,co-dart,co-gem)-free
(2K
2
,C
5
,
C
6
,
C
7
,
C
8
,
XC
11
,co-claw,co-diamond)-free
(2K
2
,C
5
,
C
6
,
C
7
,
C
8
)-free
(2K
2
,C
5
,
C
6
,net)-free
(2K
2
,C
5
,
T
2
)-free
(2K
2
,
2P
3
,
C
6
)-free
(2K
2
,
P
6
)-free
(2K
2
,
X
91
,co-claw)-free
(2K
2
,claw)-free
(2K
2
,co-claw,co-diamond)-free
(2K
3
+ e,5-pan,A,C
6
,E,K
3,3
-e,P
6
,R,X
166
,X
167
,X
169
,X
170
,X
171
,X
172
,X
18
,X
37
,X
45
,X
5
,X
58
,X
84
,X
95
,X
98
,
5-pan
,
A
,
C
6
,
E
,
P
6
,
R
,
X
166
,
X
167
,
X
169
,
X
170
,
X
171
,
X
172
,
X
18
,
X
37
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,
X
98
,antenna,co-antenna,co-domino,co-fish,co-twin-C
5
,co-twin-house,domino,fish,twin-C
5
,twin-house)-free
(2K
3
+ e,A,C
5
,C
6
,E,H,K
3,3
-e,R,X
168
,X
171
,X
18
,X
45
,X
5
,X
58
,X
84
,X
95
,
A
,
C
6
,
E
,
H
,
R
,
X
168
,
X
171
,
X
18
,
X
45
,
X
5
,
X
58
,
X
84
,
X
95
,antenna,co-antenna,co-domino,co-fish,co-twin-house,domino,fish,twin-house)-free
(2P
3
,C
4
,C
6
)-free
3-DIR contact
(3K
2
,E,net,odd anti-hole)-free
4-regular ∩ hamiltonian ∩ planar
(4K
1
,C
7
,X
195
,X
196
,X
38
,X
39
,
W
5
,
X
194
,
X
86
,
X
88
,
X
89
,
X
90
,house)-free
(4K
1
,C
7
,X
38
,X
39
,
K
3,3
∪ K
1
,
W
4
∪ K
1
,
W
5
,
X
86
,
X
87
,
X
88
,
X
89
,
X
90
,butterfly ∪ K
1
,diamond)-free
(4K
1
,co-claw,co-diamond)-free
(4K
1
,gem)-free
(4K
1
,house)-free
(5-pan,A,P
6
,X
186
,
3P
3
,
P
3
∪ P
4
,
X
102
,
X
180
,
X
181
,
X
182
,
X
183
,
X
184
,
X
185
,
X
187
,
X
188
,
X
189
,
X
190
,
X
191
,
X
192
,
X
193
,house,twin-C
5
)-free
(5-pan,T
2
,X
172
)-free ∩ planar
5-regular ∩ hamiltonian ∩ planar
5-regular ∩ planar
(6,2)-chordal
(6,3)
(7,5)
AT-free
AT-free ∩ claw-free
B
0
-VPG ∩ triangle-free
B
1
-VCPG
(BW
3
,C
5
,K
3,4
,K
3,4
-e,T
2
,X
18
,X
92
,X
93
,triangle)-free
Birkhoff
(C
4
,C
5
,C
6
,C
7
,C
8
,XC
11
,claw,diamond)-free
(C
4
,C
5
,K
4
,diamond)-free ∩ planar
(C
4
,C
5
,T
2
)-free
(C
4
,C
5
)-free ∩ Helly
(C
4
,C
5
)-free ∩ cop-win
(C
4
,K
4
,claw,diamond)-free
(C
4
,P
5
)-free
(C
4
,P
6
)-free
(C
4
,X
91
,claw)-free
(C
4
,claw,diamond)-free
C
4
-free ∩ odd-signable
(C
5
,K
3,3
-e,T
2
,X
18
,X
94
,domino,triangle)-free
(C
5
,P,P
5
,
P
,bull,co-gem,fork)-free
(C
5
,P,co-fork,fork,gem,house)-free
(C
5
,P
5
,
P
,co-fork,co-gem,fork)-free
(C
6
,K
3,3
+e,P,P
7
,X
37
,X
41
)-free
CIS
(C
n+3
∪ K
1
,diamond,paw)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,W
n+4
,X
31
,XF
2
n+1
,XF
3
n
,
C
6
,
X
37
,
X
90
,domino,twin-C
5
)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,
C
6
,
X
103
,
X
37
,
X
88
,
X
90
,diamond,domino,eiffeltower,net ∪ K
1
,twin-C
5
)-free
(C
n+4
∪ K
1
,K
2,3
,T
2
,
X
90
,domino,paw,twin-C
5
)-free
(C
n+4
∪ K
1
,S
3
∪ K
1
,X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,
odd-cycle ∪ K
1
,even anti-hole,net)-free
(C
n+6
,T
2
,X
2
,X
3
,X
30
,X
31
,X
32
,X
33
,X
34
,X
35
,X
36
,X
37
,X
38
,X
39
,X
40
,X
41
,XF
2
n+1
,XF
3
n
,XF
4
n
)-free
(C
n+6
,X
37
,claw,co-antenna,net,sun)-free
Delaunay
Deza
E-free ∩ planar
F
n
grid
Gabriel
Hamilton-connected
Hamiltonian hereditary
Hamming
Helly ∩ bridged
Helly ∩ reflexive
Helly circle
Helly circular arc ∩ concave-round
Helly circular arc ∩ quasi-line
Helly circular arc ∩ self-clique
Helly subtree
(K
1,4
,P,P
5
,fork)-free
K
1,4
-free ∩ almost claw-free ∩ locally connected
K
1,4
-free ∩ well covered
(K
2,3
,P,P
5
)-free
(K
2,3
,P,hole)-free
(K
2,3
,P
5
)-free
(K
2,3
,diamond)-free ∩ weakly modular
(K
3,3
,P
5
)-free
(K
3,3
-e,P
5
,X
98
)-free
(K
3,3
-e,P
5
,X
99
)-free
(K
3,3
-e,P
5
)-free
(K
4
,P
5
)-free
(K
4
,co-gem)-free
K
4
-free ∩ map
K
4
-free ∩ planar
Laman
Laman ∩ planar
Mycielski
(P,P
5
)-free
(P,P
7
)-free
(P,P
8
)-free
(P
2
∪ P
3
,house)-free
(P
5
,
C
6
)-free
(P
5
,
P
2
∪ P
3
)-free
(P
5
,bull)-free
(P
5
,claw)-free
(P
5
,co-fork)-free
(P
5
,house)-free
(P
6
,claw)-free
PURE-k-DIR
Raspail
(S
3
,
3K
2
,
E
,odd-hole)-free
(S
3
,claw,net)-free
Urquhart
(X
42
,
T
2
,
X
205
,
X
206
,
X
207
,
X
208
,net)-free ∩ normal circular arc ∩ quasi-line
(X
91
,claw)-free
XC
10
-free ∩ pseudo-modular
XC
10
-free ∩ weakly modular
(
C
7
,odd-hole)-free
(
X
37
,co-diamond,even anti-cycle)-free
(
XC
11
,co-claw,co-diamond)-free
absolute reflexive retract
(anti-hole,fork)-free
balanced
bar visibility
bigeodetic
bounded cutwidth
bounded degree
bounded degree ∩ bounded treewidth
bounded treewidth
bridged
bridged ∩ clique-Helly
building-free ∩ even-signable
building-free ∩ odd-signable
(bull,fork)-free
(butterfly,claw)-free
circle ∩ diamond-free
circular arc ∩ clique-Helly
circular arc ∩ diamond-free
circular arc ∩ paw-free
(claw,net)-free
(claw,odd anti-hole)-free
(claw,odd-hole)-free
claw-free ∩ locally connected
claw-free ∩ upper domination perfect
claw-free ∩ well covered
clique-Helly ∩ dismantlable ∩ reflexive
clique-perfect
clique-perfect ∩ triangle-free
co-β-perfect
co-building-free
co-circular perfect
(co-claw,odd-hole)-free
(co-diamond,even anti-cycle)-free
(co-fork,hole)-free
complete Hamming
concave-round
diametral path
distance regular
distance regular of diameter 2
domination perfect ∩ planar
edge regular
equimatchable
even anti-cycle-free
even-cycle-free
extended P
4
-laden
(fork,house)-free
frame hereditary dominating pair
fully cycle extendable
fuzzy circular interval
fuzzy linear interval
generically minimally rigid
geodetic
graceful
harmonious
hereditary clique-Helly ∩ self-clique
hereditary dismantlable
hereditary dominating pair
hereditary weakly modular
homothetic triangle contact
induced-hereditary pseudo-modular
interval enumerable
interval regular
interval regular of diameter 2
irredundance perfect with ir(G)=2
isometric-HH-free
isometric-hereditary pseudo-modular
k-polygon
k-regular, fixed k
k-regular, fixed k>= 3
k-regular, fixed k>= 6
line ∩ well covered
line perfect
locally connected ∩ maximum degree 4
locally connected ∩ maximum degree 7
max-tolerance
maximal planar
middle
neighbourhood-Helly ∩ pseudo-modular ∩ reflexive
normal
normal Helly circular arc
normal circular arc
odd-signable
odd-signable ∩ triangle-free
(p,q)-colorable
(p,q)-split
p-connected
p-tree
pairwise compatibility
partitionable
path orderable
planar ∩ strongly regular
polyhedral
probe (1,2)-colorable
probe (2,2)-colorable
probe AT-free
probe co-bipartite
probe co-comparability
probe comparability
probe permutation
pseudo-median
(q,t)
quasi-median
rectagraph
reflexive
relative neighbourhood graph
self-clique
self-complementary
semi-square intersection
strict B
1
-VCPG
strong asteroid free
strongly even-signable
strongly odd-signable
strongly regular
unbreakable
unigraph
unit Helly circle
unit bar visibility
unit grid intersection
walk regular
weak dominating pair
weakly median
weakly modular
well-dominated
back to top
AltStyle
によって変換されたページ
(->オリジナル)
/
アドレス:
モード:
デフォルト
音声ブラウザ
ルビ付き
配色反転
文字拡大
モバイル