Logo
(追記) (追記ここまで)

31539번 - 선형 회귀는 너무 쉬워 4 서브태스크스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 1024 MB284814827.429%

문제

이 문제는 선형 회귀는 너무 쉬워 3과 문제에서 사용하는 식의 차수만 다릅니다.

유림이는 선형 회귀에 자신이 있다. 그래서 MatKor 동아리에서 선형 회귀에 관한 수업을 할 때 집중하지 않았다. 당시 강사였던 동우는 이를 못마땅하게 여겨 유림이에게 과제로 선형 회귀는 너무 쉬워 1선형 회귀는 너무 쉬워 2, 선형 회귀는 너무 쉬워 3을 내주었고, 유림이는 세 문제를 쉽게 풀었다.

기존의 일반적인 선형 회귀 문제는 다음과 같다. 데이터 $(x_1,y_1) ,(x_2,y_2) ,\cdots ,(x_n,y_n)$이 주어졌을 때, 이를 가장 잘 설명하는 일차함수 $y=ax+b$를 찾는 문제이다. 여기서 주어진 점들 $(x_i,y_i)$에 대해 $x_i$를 통해 얻는 추정치 $\hat{y_i} =ax_i+b$로 정의하고, 실제 $y_i$에서 예측치인 $\hat{y_i}$를 뺀 값 $y_i-\hat{y_i}$를 잔차 $\epsilon_i$로 정의한다.

선형 회귀 문제는 이 잔차 제곱의 합이 0ドル$에 가장 가깝게, 즉 $f_2(a,b) =\displaystyle\sum_{i=1}^n\epsilon_i^2=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^2$이 최소가 되도록 하는 실수 $a$와 $b$를 찾는 문제이다.

동우는 여기에서 더 발전시켜 잔차 $k$제곱의 합 즉, $f_k(a,b) =\displaystyle\sum_{i=1}^n\epsilon_i^k=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^k$이 0ドル$에 가장 가깝게 하는 실수 $a$와 $b$을 구하는 문제를 냈다.

이 문제를 풀던 유림이는 너무 어려워서 동우에게 조금만 쉽게 바꿔 달라고 하자 동우는 조금 고민하다 다음과 같은 조건을 추가한다. ”$k=4$일 때만 구해. 그리고 $y$절편이 정해져 있을 때 기울기만 정해. 또, 모든 점의 $x$좌표는 양의 정수, $y$좌표도 정수라고 가정하자.”

이제 유림이가 풀 문제는 다음과 같다. 주어진 $b$에 대해 $f_4(a) =\displaystyle\sum_{i=1}^n\epsilon_i^4=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^4$이 0ドル$에 가장 가깝게 하는 실수 $a$를 $a_4$라고 할 때, $a_4$를 구하면 된다.

입력

첫 번째 줄에 데이터의 개수를 의미하는 정수 $n$과 $y$ 절편을 의미하는 정수 $b$가 공백으로 구분되어 주어진다. $(1\le n\le 10^5;$ $-10^6\le b\le 10^6)$

두 번째 줄부터 $n$개의 줄에 걸쳐 한 줄에 하나씩 점의 좌표를 나타내는 정수 $x_i$와 $y_i$의 값이 공백으로 구분되어 주어진다. $(1\le x_i\le 10^6;$ $-10^6\le y_i\le 10^6)$

이때, 서로 같은 점이 여러 번 주어질 수 있음에 유의하라.

출력

첫 번째 줄에 $f_4(a)$의 값이 0ドル$에 가장 가깝게 하는 $a,ドル 즉, $a_4$을 출력한다.

답이 여러 가지라면 그중 아무거나 하나 출력한다.

가능한 정답 중 최소 하나 이상과의 절대오차 또는 상대오차가 10ドル^{-7}$ 이하이면 정답으로 인정된다.

제한

서브태스크

번호배점제한
18

$b=0;$ $y_i = 0$

248

$b = 0;$ $-10\le y_i \le 10$

357

$b=0;$ $y_i=x_i$ 혹은 $y_i= 0$

455

$n \le 2$

582

추가적인 제한 조건 없음

예제 입력 1

2 -2
3 10
1 2

예제 출력 1

4

$a=4$일 때, $f(a)=(10-4\cdot 3 - (-2))^4 + (2-4\cdot 1 - (-2))^4 = 0 + 0 = 0$으로 0ドル$에 가장 가깝다.

예제 입력 2

2 0
2 1
3 -8

예제 출력 2

-1.501196113

$a=\frac{-208 -38 \sqrt[3]{12} + 57\sqrt[3]{18}}{97}$일 때, $f(a)=\frac{130321}{912673}\left(-2255+5256\sqrt[3]{12}-2646\sqrt[3]{18}\right)$로 0ドル$에 가장 가깝다.

예제 입력 3

5 0
1 1
1 2
1 4
2 5
2 6

예제 출력 3

2.5757694454

힌트

W3sicHJvYmxlbV9pZCI6IjMxNTM5IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDQiLCJkZXNjcmlwdGlvbiI6IjxibG9ja3F1b3RlPlxyXG48cD5cdWM3NzQgXHViYjM4XHVjODFjXHViMjk0IDxhIGhyZWY9XCJcL3Byb2JsZW1cLzMxNTMyXCI+XHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDM8XC9hPlx1YWNmYyBcdWJiMzhcdWM4MWNcdWM1ZDBcdWMxMWMgXHVjMGFjXHVjNmE5XHVkNTU4XHViMjk0IFx1YzJkZFx1Yzc1OCBcdWNjMjhcdWMyMThcdWI5Y2MgXHViMmU0XHViOTg1XHViMmM4XHViMmU0LjxcL3A+XHJcbjxcL2Jsb2NrcXVvdGU+XHJcblxyXG48cD5cdWM3MjBcdWI5YmNcdWM3NzRcdWIyOTQgXHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YzVkMCBcdWM3OTBcdWMyZTBcdWM3NzQgXHVjNzg4XHViMmU0LiBcdWFkZjhcdWI3OThcdWMxMWMgTWF0S29yIFx1YjNkOVx1YzU0NFx1YjlhY1x1YzVkMFx1YzExYyBcdWMxMjBcdWQ2MTUgXHVkNjhjXHVhZGMwXHVjNWQwIFx1YWQwMFx1ZDU1YyBcdWMyMThcdWM1YzVcdWM3NDQgXHVkNTYwIFx1YjU0YyBcdWM5ZDFcdWM5MTFcdWQ1NThcdWM5YzAgXHVjNTRhXHVjNTU4XHViMmU0LiBcdWIyZjlcdWMyZGMgXHVhYzE1XHVjMGFjXHVjNjAwXHViMzU4IFx1YjNkOVx1YzZiMFx1YjI5NCBcdWM3NzRcdWI5N2MgXHViYWJiXHViOWM4XHViNTQ1XHVkNTU4XHVhYzhjIFx1YzVlY1x1YWNhOCBcdWM3MjBcdWI5YmNcdWM3NzRcdWM1ZDBcdWFjOGMgXHVhY2ZjXHVjODFjXHViODVjIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzI3Mjk1XCI+XHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDE8XC9hPlx1YWNmYyA8YSBocmVmPVwiXC9wcm9ibGVtXC8yODY5MlwiPlx1YzEyMFx1ZDYxNSBcdWQ2OGNcdWFkYzBcdWIyOTQgXHViMTA4XHViYjM0IFx1YzI2Y1x1YzZjYyAyPFwvYT4sIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzMxNTMyXCI+XHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDM8XC9hPlx1Yzc0NCBcdWIwYjRcdWM4ZmNcdWM1YzhcdWFjZTAsIFx1YzcyMFx1YjliY1x1Yzc3NFx1YjI5NCBcdWMxMzggXHViYjM4XHVjODFjXHViOTdjIFx1YzI3ZFx1YWM4YyBcdWQ0ODBcdWM1YzhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YWUzMFx1Yzg3NFx1Yzc1OCBcdWM3N2NcdWJjMThcdWM4MDFcdWM3NzggXHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMCBcdWJiMzhcdWM4MWNcdWIyOTQgXHViMmU0XHVjNzRjXHVhY2ZjIFx1YWMxOVx1YjJlNC4gXHViMzcwXHVjNzc0XHVkMTMwICQoeF8xLHlfMSkgLCh4XzIseV8yKSAsXFxjZG90cyAsKHhfbix5X24pJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM4NGNcdWM3NDQgXHViNTRjLCBcdWM3NzRcdWI5N2MgXHVhYzAwXHVjN2E1IFx1Yzc5OCBcdWMxMjRcdWJhODVcdWQ1NThcdWIyOTQgXHVjNzdjXHVjYzI4XHVkNTY4XHVjMjE4ICR5PWF4K2IkXHViOTdjIFx1Y2MzZVx1YjI5NCBcdWJiMzhcdWM4MWNcdWM3NzRcdWIyZTQuIFx1YzVlY1x1YWUzMFx1YzExYyBcdWM4ZmNcdWM1YjRcdWM5YzQgXHVjODEwXHViNGU0ICQoeF9pLHlfaSkkXHVjNWQwIFx1YjMwMFx1ZDU3NCAkeF9pJFx1Yjk3YyBcdWQxYjVcdWQ1NzQgXHVjNWJiXHViMjk0IFx1Y2Q5NFx1YzgxNVx1Y2U1OCAkXFxoYXR7eV9pfSA9YXhfaStiJFx1Yjg1YyBcdWM4MTVcdWM3NThcdWQ1NThcdWFjZTAsIFx1YzJlNFx1YzgxYyAkeV9pJFx1YzVkMFx1YzExYyBcdWM2MDhcdWNlMjFcdWNlNThcdWM3NzggJFxcaGF0e3lfaX0kXHViOTdjIFx1YmU4MCBcdWFjMTIgJHlfaS1cXGhhdHt5X2l9JFx1Yjk3YyBcdWM3OTRcdWNjMjggJFxcZXBzaWxvbl9pJFx1Yjg1YyBcdWM4MTVcdWM3NThcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YzEyMFx1ZDYxNSBcdWQ2OGNcdWFkYzAgXHViYjM4XHVjODFjXHViMjk0IFx1Yzc3NCBcdWM3OTRcdWNjMjggXHVjODFjXHVhY2YxXHVjNzU4IFx1ZDU2OVx1Yzc3NCAkMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YWM4YywgXHVjOTg5ICRmXzIoYSxiKSA9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uXFxlcHNpbG9uX2leMj1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm4oeV9pLWF4X2ktYileMiRcdWM3NzQgXHVjZDVjXHVjMThjXHVhYzAwIFx1YjQxOFx1YjNjNFx1Yjg1ZCBcdWQ1NThcdWIyOTQgXHVjMmU0XHVjMjE4ICRhJFx1YzY0MCAkYiRcdWI5N2MgXHVjYzNlXHViMjk0IFx1YmIzOFx1YzgxY1x1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViM2Q5XHVjNmIwXHViMjk0IFx1YzVlY1x1YWUzMFx1YzVkMFx1YzExYyBcdWIzNTQgXHViYzFjXHVjODA0XHVjMmRjXHVjZjFjIFx1Yzc5NFx1Y2MyOCAkayRcdWM4MWNcdWFjZjFcdWM3NTggXHVkNTY5IFx1Yzk4OSwgJGZfayhhLGIpID1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm5cXGVwc2lsb25faV5rPVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1ebih5X2ktYXhfaS1iKV5rJFx1Yzc3NCAkMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YWM4YyBcdWQ1NThcdWIyOTQgXHVjMmU0XHVjMjE4ICRhJFx1YzY0MCAkYiRcdWM3NDQgXHVhZDZjXHVkNTU4XHViMjk0IFx1YmIzOFx1YzgxY1x1Yjk3YyBcdWIwYzhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1Yzc3NCBcdWJiMzhcdWM4MWNcdWI5N2MgXHVkNDgwXHViMzU4IFx1YzcyMFx1YjliY1x1Yzc3NFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjNWI0XHViODI0XHVjNmNjXHVjMTFjIFx1YjNkOVx1YzZiMFx1YzVkMFx1YWM4YyBcdWM4NzBcdWFlMDhcdWI5Y2MgXHVjMjdkXHVhYzhjIFx1YmMxNFx1YWZkNCBcdWIyZWNcdWI3N2NcdWFjZTAgXHVkNTU4XHVjNzkwIFx1YjNkOVx1YzZiMFx1YjI5NCBcdWM4NzBcdWFlMDggXHVhY2UwXHViYmZjXHVkNTU4XHViMmU0IFx1YjJlNFx1Yzc0Y1x1YWNmYyBcdWFjMTlcdWM3NDAgXHVjODcwXHVhYzc0XHVjNzQ0IFx1Y2Q5NFx1YWMwMFx1ZDU1Y1x1YjJlNC4gJnJkcXVvOyRrPTQkXHVjNzdjIFx1YjU0Y1x1YjljYyBcdWFkNmNcdWQ1NzQuIFx1YWRmOFx1YjlhY1x1YWNlMCAkeSRcdWM4MDhcdWQzYjhcdWM3NzQgXHVjODE1XHVkNTc0XHVjODM4IFx1Yzc4OFx1Yzc0NCBcdWI1NGMgXHVhZTMwXHVjNmI4XHVhZTMwXHViOWNjIFx1YzgxNVx1ZDU3NC4gXHViNjEwLCBcdWJhYThcdWI0ZTAgXHVjODEwXHVjNzU4ICR4JFx1Yzg4Y1x1ZDQ1Y1x1YjI5NCBcdWM1OTFcdWM3NTggXHVjODE1XHVjMjE4LCAkeSRcdWM4OGNcdWQ0NWNcdWIzYzQgXHVjODE1XHVjMjE4XHViNzdjXHVhY2UwIFx1YWMwMFx1YzgxNVx1ZDU1OFx1Yzc5MC4mcmRxdW87PFwvcD5cclxuXHJcbjxwPlx1Yzc3NFx1YzgxYyBcdWM3MjBcdWI5YmNcdWM3NzRcdWFjMDAgXHVkNDgwIFx1YmIzOFx1YzgxY1x1YjI5NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHViMmU0LiBcdWM4ZmNcdWM1YjRcdWM5YzQgJGIkXHVjNWQwIFx1YjMwMFx1ZDU3NCAkZl80KGEpID1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm5cXGVwc2lsb25faV40PVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1ebih5X2ktYXhfaS1iKV40JFx1Yzc3NCAkMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YWM4YyBcdWQ1NThcdWIyOTQgXHVjMmU0XHVjMjE4ICRhJFx1Yjk3YyAkYV80JFx1Yjc3Y1x1YWNlMCBcdWQ1NjAgXHViNTRjLCAkYV80JFx1Yjk3YyBcdWFkNmNcdWQ1NThcdWJhNzQgXHViNDFjXHViMmU0LjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHVjY2FiIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDAgXHViMzcwXHVjNzc0XHVkMTMwXHVjNzU4IFx1YWMxY1x1YzIxOFx1Yjk3YyBcdWM3NThcdWJiZjhcdWQ1NThcdWIyOTQgXHVjODE1XHVjMjE4ICRuJFx1YWNmYyAkeSQgXHVjODA4XHVkM2I4XHVjNzQ0IFx1Yzc1OFx1YmJmOFx1ZDU1OFx1YjI5NCBcdWM4MTVcdWMyMTggJGIkXHVhYzAwIFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MThcdWM1YjQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAkKDFcXGxlIG5cXGxlIDEwXjU7JCAkLTEwXjZcXGxlIGJcXGxlIDEwXjYpJDxcL3A+XHJcblxyXG48cD5cdWI0NTAgXHViYzg4XHVjOWY4IFx1YzkwNFx1YmQ4MFx1ZDEzMCAkbiRcdWFjMWNcdWM3NTggXHVjOTA0XHVjNWQwIFx1YWM3OFx1Y2NkMCBcdWQ1NWMgXHVjOTA0XHVjNWQwIFx1ZDU1OFx1YjA5OFx1YzUyOSBcdWM4MTBcdWM3NTggXHVjODhjXHVkNDVjXHViOTdjIFx1YjA5OFx1ZDBjMFx1YjBiNFx1YjI5NCBcdWM4MTVcdWMyMTggJHhfaSRcdWM2NDAgJHlfaSRcdWM3NTggXHVhYzEyXHVjNzc0IFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MThcdWM1YjQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAkKDFcXGxlIHhfaVxcbGUgMTBeNjskICQtMTBeNlxcbGUgeV9pXFxsZSAxMF42KSQ8XC9wPlxyXG5cclxuPHA+XHVjNzc0XHViNTRjLCBcdWMxMWNcdWI4NWMgXHVhYzE5XHVjNzQwIFx1YzgxMFx1Yzc3NCBcdWM1ZWNcdWI3ZWMgXHViYzg4IFx1YzhmY1x1YzViNFx1YzljOCBcdWMyMTggXHVjNzg4XHVjNzRjXHVjNWQwIFx1YzcyMFx1Yzc1OFx1ZDU1OFx1Yjc3Yy48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCAkZl80KGEpJFx1Yzc1OCBcdWFjMTJcdWM3NzQgJDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWFjOGMgXHVkNTU4XHViMjk0ICRhJCwgXHVjOTg5LCAkYV80JFx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjJmNVx1Yzc3NCBcdWM1ZWNcdWI3ZWMgXHVhYzAwXHVjOWMwXHViNzdjXHViYTc0IFx1YWRmOFx1YzkxMSBcdWM1NDRcdWJiMzRcdWFjNzBcdWIwOTggXHVkNTU4XHViMDk4IFx1Y2Q5Y1x1YjgyNVx1ZDU1Y1x1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVhYzAwXHViMmE1XHVkNTVjIFx1YzgxNVx1YjJmNSBcdWM5MTEgXHVjZDVjXHVjMThjIFx1ZDU1OFx1YjA5OCBcdWM3NzRcdWMwYzFcdWFjZmNcdWM3NTggXHVjODA4XHViMzAwXHVjNjI0XHVjYzI4IFx1YjYxMFx1YjI5NCBcdWMwYzFcdWIzMDBcdWM2MjRcdWNjMjhcdWFjMDAgJDEwXnstN30kIFx1Yzc3NFx1ZDU1OFx1Yzc3NFx1YmE3NCBcdWM4MTVcdWIyZjVcdWM3M2NcdWI4NWMgXHVjNzc4XHVjODE1XHViNDFjXHViMmU0LjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjEiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IktvcmVhbiIsInN1YnRhc2sxIjoiPHA+JGI9MDskICR5X2kgPSAwJDxcL3A+XHJcbiIsInN1YnRhc2syIjoiPHA+JGIgPSAwOyQgJC0xMFxcbGUgeV9pIFxcbGUgMTAkPFwvcD5cclxuIiwic3VidGFzazMiOiI8cD4kYj0wOyQgJHlfaT14X2kkIFx1ZDYzOVx1Yzc0MCAkeV9pPSAwJDxcL3A+XHJcbiIsInN1YnRhc2s0IjoiPHA+JG4gXFxsZSAyJDxcL3A+XHJcbiIsInN1YnRhc2s1IjoiPHA+XHVjZDk0XHVhYzAwXHVjODAxXHVjNzc4IFx1YzgxY1x1ZDU1YyBcdWM4NzBcdWFjNzQgXHVjNWM2XHVjNzRjPFwvcD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMSI6IjxwPiRhPTQkXHVjNzdjIFx1YjU0YywgJGYoYSk9KDEwLTRcXGNkb3QgMyAtICgtMikpXjQmbmJzcDsrJm5ic3A7KDItNFxcY2RvdCAxJm5ic3A7LSAoLTIpKV40ID0gMCArIDAgPSAwJFx1YzczY1x1Yjg1YyAkMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YjJlNC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8yIjoiPHA+JGE9XFxmcmFjey0yMDggLTM4IFxcc3FydFszXXsxMn0gKyA1N1xcc3FydFszXXsxOH19ezk3fSRcdWM3N2MgXHViNTRjLCAkZihhKT1cXGZyYWN7MTMwMzIxfXs5MTI2NzN9XFxsZWZ0KC0yMjU1KzUyNTZcXHNxcnRbM117MTJ9LTI2NDZcXHNxcnRbM117MTh9XFxyaWdodCkkXHViODVjJm5ic3A7JDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWIyZTQuPFwvcD5cclxuIn0seyJwcm9ibGVtX2lkIjoiMzE1MzkiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJMaW5lYXIgUmVncmVzc2lvbiBpcyBFWlBaIDQiLCJkZXNjcmlwdGlvbiI6IjxibG9ja3F1b3RlPlxyXG48cD5UaGlzIHByb2JsZW0sIGNvbXBhcmVkIHRvIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzMxNTMyXCI+TGluZWFyIFJlZ3Jlc3Npb24gaXMgRVpQWiAzPFwvYT4sIGlzIHRoZSBzYW1lIGV4Y2VwdCBmb3IgdGhlIGRlZ3JlZSBvZiB0aGUgZXhwcmVzc2lvbiB1c2VkIGluIHRoZSBwcm9ibGVtLjxcL3A+XHJcbjxcL2Jsb2NrcXVvdGU+XHJcblxyXG48cD5ZdXJpbSBpcyB2ZXJ5IGNvbmZpZGVudCBpbiBsaW5lYXIgcmVncmVzc2lvbiwgd2hpY2ggd2FzIHdoeSBzaGUgZGlkbiZyc3F1bzt0IGNvbmNlbnRyYXRlIHdoZW4gRG9uZ3dvbyB3YXMgdGVhY2hpbmcgYWJvdXQgbGluZWFyIHJlZ3Jlc3Npb24gaW4gdGhlIE1hdEtvciBjbHViLiBEb25nd29vIGRpc2FwcHJvdmVkIG9mIHRoaXMgYW5kIGdhdmUgWXVyaW0gdHdvIHByb2JsZW1zLCB3aGljaCB3ZXJlIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzI3Mjk1XCI+TGluZWFyIFJlZ3Jlc3Npb24gaXMgRVpQWiAxPFwvYT4sIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzI4NjkyXCI+TGluZWFyIFJlZ3Jlc3Npb24gaXMgRVpQWiAyPFwvYT4mbmJzcDthbmQgPGEgaHJlZj1cIlwvcHJvYmxlbVwvMzE1MzJcIj5MaW5lYXIgUmVncmVzc2lvbiBpcyBFWlBaIDM8XC9hPiwgYW5kIFl1cmltIHNvbHZlZCB0aGVzZSBwcm9ibGVtcyBlYXNpbHkuPFwvcD5cclxuXHJcbjxwPlRoZSBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24gbWV0aG9kIGlzIGFzIGZvbGxvd3MuIEdpdmVuIHRoZSBzYW1wbGUgcG9pbnRzICQoeF8xLHlfMSkgLCh4XzIseV8yKSAsXFxjZG90cyAsKHhfbix5X24pJCwgdGhlIG9iamVjdGl2ZSBpcyB0byBmaW5kIGEgbGluZWFyIGZ1bmN0aW9uICR5PWF4K2IkIHRoYXQgcHJlZGljdHMgdGhlIGZ1bmN0aW9uIGJldHdlZW4gJHgkIGFuZCAkeSQgYXMgYWNjdXJhdGVseSBhcyBwb3NzaWJsZS4gV2UgZGVmaW5lICRcXGhhdHt5X2l9JCBhcyB0aGUgZXN0aW1hdGVkIHZhbHVlIGNhbGN1bGF0ZWQgdXNpbmcgdGhlIHZhbHVlICR4X2kkLCB3aGljaCBpcyAkXFxoYXR7eV9pfSA9YXhfaStiJCwgYW5kIHRoZSByZXNpZHVhbCAkXFxlcHNpbG9uX2kkIGFzIHRoZSBhY3R1YWwgdmFsdWUgJHlfaSQgc3VidHJhY3RlZCBieSB0aGUgZXN0aW1hdGVkIHZhbHVlICRcXGhhdHt5X2l9JCwgd2hpY2ggZXF1YWxzICR5X2ktXFxoYXR7eV9pfSQuPFwvcD5cclxuXHJcbjxwPlRoZSBtb3N0IGNvbW1vbiB3YXkgdG8gZXN0aW1hdGUgaXMgdG8gdXNlIHRoZSBPTFMgbWV0aG9kLCB3aGljaCBpcyBmaW5kaW5nIHJlYWwgbnVtYmVycyAkYSQgYW5kICRiJCB0aGF0IG1ha2VzIHRoZSBzdW0gb2YgdGhlIHNxdWFyZWQgcmVzaWR1YWxzLCB3aGljaCBpcyAkZl8yKGEsYikgPVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1eblxcZXBzaWxvbl9pXjI9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uKHlfaS1heF9pLWIpXjIkLCBjbG9zZXN0IHRvICQwJC48XC9wPlxyXG5cclxuPHA+RG9uZ3dvbyB3ZW50IGZ1cnRoZXIgYW5kIG1hZGUgYSBwcm9ibGVtIHRvIGZpbmQgcmVhbCBudW1iZXJzICRhJCBhbmQgJGIkIHRoYXQgbWFrZXMgdGhlIHN1bSBvZiB0aGUgJGskLXRoIHBvd2VyIG9mIHJlc2lkdWFscywgd2hpY2ggaXMgJGZfayhhLGIpID1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm5cXGVwc2lsb25faV5rPVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1ebih5X2ktYXhfaS1iKV5rJCwgY2xvc2VzdCB0byAkMCQuPFwvcD5cclxuXHJcbjxwPll1cmltLCB0cnlpbmcgdG8gc29sdmUgdGhpcyBwcm9ibGVtLCB0aG91Z2h0IGl0IHdhcyB0b28gZGlmZmljdWx0IGFuZCBhc2tlZCBEb25nd29vIHRvIGNoYW5nZSB0aGUgcHJvYmxlbSBhIGxpdHRsZSBlYXNpZXIsIHNvIERvbmd3b28gYWRkZWQgdGhlIGZvbGxvd2luZyBjb25kaXRpb25zLiAmbGRxdW87VHJ5IHRvIGZpbmQgJGEkIGFuZCAkYiQgb25seSB3aGVuICRrPTQkLiBBbHNvLCBmaW5kIG9ubHkgdGhlIHNsb3BlIHdoZW4gdGhlICR5JC1pbnRlcmNlcHQgaXMgZ2l2ZW4uIEFsc28sIHN1cHBvc2UgdGhhdCB0aGUgJHgkLWNvb3JkaW5hdGVzIG9mIGFsbCBwb2ludHMgYXJlIHBvc2l0aXZlIGludGVnZXJzLCBhbmQgdGhlICR5JC1jb29yZGluYXRlcyBvZiBhbGwgcG9pbnRzIGFyZSBpbnRlZ2Vycy4mcmRxdW87PFwvcD5cclxuXHJcbjxwPldpdGggdGhlc2UgY29uZGl0aW9ucywgWXVyaW0gbm93IGhhcyB0byBmaW5kICRhXzQkIHdoZXJlICRhXzQkIGlzIHRoZSB2YWx1ZSBvZiAkYSQgdGhhdCBtYWtlcyAkZl80KGEpID1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm5cXGVwc2lsb25faV40PVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1ebih5X2ktYXhfaS1iKV40JCwgY2xvc2VzdCB0byAkMCQsIGdpdmVuIHRoZSB2YWx1ZSBvZiAkYiQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBjb250YWlucyB0d28gaW50ZWdlcnMgJG4kIGFuZCAkYiQsIHNlcGFyYXRlZCBieSBzcGFjZXMgJCgxXFxsZSBuXFxsZSAxMF41OyQgJC0xMF42XFxsZSBiXFxsZSAxMF42KSQgJm5kYXNoOyB0aGUgbnVtYmVyIG9mIHNhbXBsZSBwb2ludHMgYW5kIHRoZSAkeSQtaW50ZXJjZXB0LjxcL3A+XHJcblxyXG48cD5UaGUgbmV4dCAkbiQgbGluZXMgZWFjaCBjb250YWluIHR3byBpbnRlZ2VycyAkeF9pJCBhbmQgJHlfaSQsIHNlcGFyYXRlZCBieSBzcGFjZXMgJCgxXFxsZSB4X2lcXGxlIDEwXjY7JCAkLTEwXjZcXGxlIHlfaVxcbGUgMTBeNikkICZuZGFzaDsgdGhlIGludGVnZXJzIGluZGljYXRpbmcgdGhlIGNvb3JkaW5hdGVzIG9mIHRoZSAkaSQtdGggc2FtcGxlIHBvaW50LjxcL3A+XHJcblxyXG48cD5Ob3RlIHRoYXQgdGhlIHNhbWUgcG9pbnRzIGNhbiBiZSBnaXZlbiBhcyBhIHNhbXBsZSBwb2ludCBtdWx0aXBsZSB0aW1lcy48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5PdXRwdXQgdGhlIHZhbHVlIG9mICRhXzQkLCB3aGljaCBpcyB0aGUgdmFsdWUgb2YgJGEkIHRoYXQgbWFrZXMgJGZfNChhKSQgY2xvc2VzdCB0byAkMCQuPFwvcD5cclxuXHJcbjxwPklmIHRoZXJlIGFyZSBtdWx0aXBsZSBhbnN3ZXJzLCBvdXRwdXQgYW55IG9uZSBvZiB0aGVtLjxcL3A+XHJcblxyXG48cD5UaGUgb3V0cHV0IGlzIGNvbnNpZGVyZWQgYXMgYSBjb3JyZWN0IGFuc3dlciBpZiB0aGUgYWJzb2x1dGUgZXJyb3Igb3IgcmVsYXRpdmUgZXJyb3Igd2l0aCBhdCBsZWFzdCBvbmUgb2YgdGhlIHBvc3NpYmxlIGNvcnJlY3QgYW5zd2VycyBpcyBsZXNzIHRoYW4gJDEwXnstN30kLjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjAiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IkVuZ2xpc2giLCJzdWJ0YXNrMSI6IjxwPiRiPTA7JCAkeV9pID0gMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrMiI6IjxwPiRiID0gMDskICQtMTBcXGxlIHlfaSBcXGxlIDEwJDxcL3A+XHJcbiIsInN1YnRhc2szIjoiPHA+JGI9MDskICR5X2lcXGluIFxcezAsIHhfaVxcfSQ8XC9wPlxyXG4iLCJzdWJ0YXNrNCI6IjxwPiRuIFxcbGUgMiQ8XC9wPlxyXG4iLCJzdWJ0YXNrNSI6IjxwPlRoZXJlIGFyZSZuYnNwO25vIGFkZGl0aW9uYWwgcmVzdHJpY3Rpb25zLjxcL3A+XHJcbiIsInNhbXBsZV9leHBsYWluXzEiOiI8cD4kYT00JCBtYWtlcyZuYnNwOyRmKGEpPSgxMC00XFxjZG90IDMgLSAoLTIpKV40Jm5ic3A7KyZuYnNwOygyLTRcXGNkb3QgMSZuYnNwOy0gKC0yKSleNCA9IDAgKyAwID0gMCQsIHdoaWNoIGlzJm5ic3A7Y2xvc2VzdCB0byAkMCQuPFwvcD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMiI6IjxwPiRhPVxcZnJhY3stMjA4IC0zOCBcXHNxcnRbM117MTJ9ICsgNTdcXHNxcnRbM117MTh9fXs5N30kIG1ha2VzJm5ic3A7JGYoYSk9XFxmcmFjezEzMDMyMX17OTEyNjczfVxcbGVmdCgtMjI1NSs1MjU2XFxzcXJ0WzNdezEyfS0yNjQ2XFxzcXJ0WzNdezE4fVxccmlnaHQpJCwgd2hpY2ggaXMmbmJzcDtjbG9zZXN0IHRvICQwJC48XC9wPlxyXG4ifV0=

출처

University > 고려대학교 > MatKor Cup > 제4회 고려대학교 MatKor Cup: 2024 Winter/Spring G번

채점 및 기타 정보

  • 예제는 채점하지 않는다.
(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /