Logo
(追記) (追記ここまで)

31532번 - 선형 회귀는 너무 쉬워 3 서브태스크스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 1024 MB294824023.669%

문제

이 문제는 선형 회귀는 너무 쉬워 4와 문제에서 사용하는 식의 차수만 다릅니다.

유림이는 선형 회귀에 자신이 있다. 그래서 MatKor 동아리에서 선형 회귀에 관한 수업을 할 때 집중하지 않았다. 당시 강사였던 동우는 이를 못마땅하게 여겨 유림이에게 과제로 선형 회귀는 너무 쉬워 1선형 회귀는 너무 쉬워 2를 내주었고, 유림이는 두 문제를 쉽게 풀었다.

기존의 일반적인 선형 회귀 문제는 다음과 같다. 데이터 $(x_1,y_1) ,(x_2,y_2) ,\cdots ,(x_n,y_n)$이 주어졌을 때, 이를 가장 잘 설명하는 일차함수 $y=ax+b$를 찾는 문제이다. 여기서 주어진 점들 $(x_i,y_i)$에 대해 $x_i$를 통해 얻는 추정치 $\hat{y_i} =ax_i+b$로 정의하고, 실제 $y_i$에서 예측치인 $\hat{y_i}$를 뺀 값 $y_i-\hat{y_i}$를 잔차 $\epsilon_i$로 정의한다.

선형 회귀 문제는 이 잔차 제곱의 합이 0ドル$에 가장 가깝게, 즉 $f_2(a,b) =\displaystyle\sum_{i=1}^n\epsilon_i^2=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^2$이 최소가 되도록 하는 실수 $a$와 $b$를 찾는 문제이다.

동우는 여기에서 더 발전시켜 잔차 $k$제곱의 합 즉, $f_k(a,b) =\displaystyle\sum_{i=1}^n\epsilon_i^k=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^k$이 0ドル$에 가장 가깝게 하는 실수 $a$와 $b$을 구하는 문제를 냈다.

이 문제를 풀던 유림이는 너무 어려워서 동우에게 조금만 쉽게 바꿔 달라고 하자 동우는 조금 고민하다 다음과 같은 조건을 추가한다. ”$k=3$일 때만 구해. 그리고 $y$절편이 정해져 있을 때 기울기만 정해. 또, 모든 점의 $x$좌표는 양의 정수, $y$좌표도 정수라고 가정하자.”

이제 유림이가 풀 문제는 다음과 같다. 주어진 $b$에 대해 $f_3(a) =\displaystyle\sum_{i=1}^n\epsilon_i^3=\displaystyle\sum_{i=1}^n(y_i-ax_i-b)^3$이 0ドル$에 가장 가깝게 하는 실수 $a$를 $a_3$이라고 할 때, $a_3$을 구하면 된다.

입력

첫 번째 줄에 데이터의 개수를 의미하는 정수 $n$과 $y$ 절편을 의미하는 정수 $b$가 공백으로 구분되어 주어진다. $(1\le n\le 10^5;$ $-10^6\le b\le 10^6)$

두 번째 줄부터 $n$개의 줄에 걸쳐 한 줄에 하나씩 점의 좌표를 나타내는 정수 $x_i$와 $y_i$의 값이 공백으로 구분되어 주어진다. $(1\le x_i\le 10^6;$ $-10^6\le y_i\le 10^6)$

이때, 서로 같은 점이 여러 번 주어질 수 있음에 유의하라.

출력

첫 번째 줄에 $f_3(a)$의 값이 0ドル$에 가장 가깝게 하는 $a,ドル 즉, $a_3$을 출력한다.

답이 여러 가지라면 그중 아무거나 하나 출력한다.

가능한 정답 중 최소 하나 이상과의 절대오차 또는 상대오차가 10ドル^{-7}$ 이하이면 정답으로 인정된다.

제한

서브태스크

번호배점제한
110

$b=0;$ $y_i = 0$

250

$b = 0;$ $-10\le y_i \le 10$

350

$b=0;$ $y_i=x_i$ 혹은 $y_i= 0$

430

$n \le 2$

560

추가적인 제한 조건 없음

예제 입력 1

2 -2
3 10
1 2

예제 출력 1

4

$a=4$일 때, $f(a)=(10-4\cdot 3 - (-2))^3 + (2-4\cdot 1 - (-2))^3= 0 + 0 = 0$으로 0ドル$에 가장 가깝다.

예제 입력 2

2 0
2 1
3 -8

예제 출력 2

-1.4

$a=-\frac{7}{5}$일 때, $f(a)$가 0ドル$에 가장 가깝다.

예제 입력 3

5 0
1 1
1 2
1 4
2 5
2 6

예제 출력 3

2.5441394119

$a=\frac{1}{19} \left( 51 - 116 \sqrt[3]{\frac{2}{19\sqrt{19769}-945}} + \sqrt[3]{\frac{19\sqrt{19769}-945}{2}}\right)$일 때, $f(a)$가 0ドル$에 가장 가깝다.

힌트

W3sicHJvYmxlbV9pZCI6IjMxNTMyIiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDMiLCJkZXNjcmlwdGlvbiI6IjxibG9ja3F1b3RlPlxyXG48cD5cdWM3NzQgXHViYjM4XHVjODFjXHViMjk0IDxhIGhyZWY9XCJcL3Byb2JsZW1cLzMxNTM5XCI+XHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDQ8XC9hPlx1YzY0MCBcdWJiMzhcdWM4MWNcdWM1ZDBcdWMxMWMgXHVjMGFjXHVjNmE5XHVkNTU4XHViMjk0IFx1YzJkZFx1Yzc1OCBcdWNjMjhcdWMyMThcdWI5Y2MgXHViMmU0XHViOTg1XHViMmM4XHViMmU0LjxcL3A+XHJcbjxcL2Jsb2NrcXVvdGU+XHJcblxyXG48cD5cdWM3MjBcdWI5YmNcdWM3NzRcdWIyOTQgXHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YzVkMCBcdWM3OTBcdWMyZTBcdWM3NzQgXHVjNzg4XHViMmU0LiBcdWFkZjhcdWI3OThcdWMxMWMgTWF0S29yIFx1YjNkOVx1YzU0NFx1YjlhY1x1YzVkMFx1YzExYyBcdWMxMjBcdWQ2MTUgXHVkNjhjXHVhZGMwXHVjNWQwIFx1YWQwMFx1ZDU1YyBcdWMyMThcdWM1YzVcdWM3NDQgXHVkNTYwIFx1YjU0YyBcdWM5ZDFcdWM5MTFcdWQ1NThcdWM5YzAgXHVjNTRhXHVjNTU4XHViMmU0LiBcdWIyZjlcdWMyZGMgXHVhYzE1XHVjMGFjXHVjNjAwXHViMzU4IFx1YjNkOVx1YzZiMFx1YjI5NCBcdWM3NzRcdWI5N2MgXHViYWJiXHViOWM4XHViNTQ1XHVkNTU4XHVhYzhjIFx1YzVlY1x1YWNhOCBcdWM3MjBcdWI5YmNcdWM3NzRcdWM1ZDBcdWFjOGMgXHVhY2ZjXHVjODFjXHViODVjIDxhIGhyZWY9XCJcL3Byb2JsZW1cLzI3Mjk1XCI+XHVjMTIwXHVkNjE1IFx1ZDY4Y1x1YWRjMFx1YjI5NCBcdWIxMDhcdWJiMzQgXHVjMjZjXHVjNmNjIDE8XC9hPlx1YWNmYyA8YSBocmVmPVwiXC9wcm9ibGVtXC8yODY5MlwiPlx1YzEyMFx1ZDYxNSBcdWQ2OGNcdWFkYzBcdWIyOTQgXHViMTA4XHViYjM0IFx1YzI2Y1x1YzZjYyAyPFwvYT5cdWI5N2MgXHViMGI0XHVjOGZjXHVjNWM4XHVhY2UwLCBcdWM3MjBcdWI5YmNcdWM3NzRcdWIyOTQgXHViNDUwIFx1YmIzOFx1YzgxY1x1Yjk3YyBcdWMyN2RcdWFjOGMgXHVkNDgwXHVjNWM4XHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWFlMzBcdWM4NzRcdWM3NTggXHVjNzdjXHViYzE4XHVjODAxXHVjNzc4IFx1YzEyMFx1ZDYxNSBcdWQ2OGNcdWFkYzAgXHViYjM4XHVjODFjXHViMjk0IFx1YjJlNFx1Yzc0Y1x1YWNmYyBcdWFjMTlcdWIyZTQuIFx1YjM3MFx1Yzc3NFx1ZDEzMCAkKHhfMSx5XzEpICwoeF8yLHlfMikgLFxcY2RvdHMgLCh4X24seV9uKSRcdWM3NzQgXHVjOGZjXHVjNWI0XHVjODRjXHVjNzQ0IFx1YjU0YywgXHVjNzc0XHViOTdjIFx1YWMwMFx1YzdhNSBcdWM3OTggXHVjMTI0XHViYTg1XHVkNTU4XHViMjk0IFx1Yzc3Y1x1Y2MyOFx1ZDU2OFx1YzIxOCAkeT1heCtiJFx1Yjk3YyBcdWNjM2VcdWIyOTQgXHViYjM4XHVjODFjXHVjNzc0XHViMmU0LiBcdWM1ZWNcdWFlMzBcdWMxMWMgXHVjOGZjXHVjNWI0XHVjOWM0IFx1YzgxMFx1YjRlNCAkKHhfaSx5X2kpJFx1YzVkMCBcdWIzMDBcdWQ1NzQgJHhfaSRcdWI5N2MgXHVkMWI1XHVkNTc0IFx1YzViYlx1YjI5NCBcdWNkOTRcdWM4MTVcdWNlNTggJFxcaGF0e3lfaX0gPWF4X2krYiRcdWI4NWMgXHVjODE1XHVjNzU4XHVkNTU4XHVhY2UwLCBcdWMyZTRcdWM4MWMgJHlfaSRcdWM1ZDBcdWMxMWMgXHVjNjA4XHVjZTIxXHVjZTU4XHVjNzc4ICRcXGhhdHt5X2l9JFx1Yjk3YyBcdWJlODAgXHVhYzEyICR5X2ktXFxoYXR7eV9pfSRcdWI5N2MgXHVjNzk0XHVjYzI4ICRcXGVwc2lsb25faSRcdWI4NWMgXHVjODE1XHVjNzU4XHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWMxMjBcdWQ2MTUgXHVkNjhjXHVhZGMwIFx1YmIzOFx1YzgxY1x1YjI5NCBcdWM3NzQgXHVjNzk0XHVjYzI4IFx1YzgxY1x1YWNmMVx1Yzc1OCBcdWQ1NjlcdWM3NzQgJDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWFjOGMsIFx1Yzk4OSAkZl8yKGEsYikgPVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1eblxcZXBzaWxvbl9pXjI9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uKHlfaS1heF9pLWIpXjIkXHVjNzc0IFx1Y2Q1Y1x1YzE4Y1x1YWMwMCBcdWI0MThcdWIzYzRcdWI4NWQgXHVkNTU4XHViMjk0IFx1YzJlNFx1YzIxOCAkYSRcdWM2NDAgJGIkXHViOTdjIFx1Y2MzZVx1YjI5NCBcdWJiMzhcdWM4MWNcdWM3NzRcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjNkOVx1YzZiMFx1YjI5NCBcdWM1ZWNcdWFlMzBcdWM1ZDBcdWMxMWMgXHViMzU0IFx1YmMxY1x1YzgwNFx1YzJkY1x1Y2YxYyBcdWM3OTRcdWNjMjggJGskXHVjODFjXHVhY2YxXHVjNzU4IFx1ZDU2OSBcdWM5ODksICRmX2soYSxiKSA9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uXFxlcHNpbG9uX2leaz1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm4oeV9pLWF4X2ktYileayRcdWM3NzQgJDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWFjOGMgXHVkNTU4XHViMjk0IFx1YzJlNFx1YzIxOCAkYSRcdWM2NDAgJGIkXHVjNzQ0IFx1YWQ2Y1x1ZDU1OFx1YjI5NCBcdWJiMzhcdWM4MWNcdWI5N2MgXHViMGM4XHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWM3NzQgXHViYjM4XHVjODFjXHViOTdjIFx1ZDQ4MFx1YjM1OCBcdWM3MjBcdWI5YmNcdWM3NzRcdWIyOTQgXHViMTA4XHViYjM0IFx1YzViNFx1YjgyNFx1YzZjY1x1YzExYyBcdWIzZDlcdWM2YjBcdWM1ZDBcdWFjOGMgXHVjODcwXHVhZTA4XHViOWNjIFx1YzI3ZFx1YWM4YyBcdWJjMTRcdWFmZDQgXHViMmVjXHViNzdjXHVhY2UwIFx1ZDU1OFx1Yzc5MCBcdWIzZDlcdWM2YjBcdWIyOTQgXHVjODcwXHVhZTA4IFx1YWNlMFx1YmJmY1x1ZDU1OFx1YjJlNCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzQwIFx1Yzg3MFx1YWM3NFx1Yzc0NCBcdWNkOTRcdWFjMDBcdWQ1NWNcdWIyZTQuICZyZHF1bzskaz0zJFx1Yzc3YyBcdWI1NGNcdWI5Y2MgXHVhZDZjXHVkNTc0LiBcdWFkZjhcdWI5YWNcdWFjZTAgJHkkXHVjODA4XHVkM2I4XHVjNzc0IFx1YzgxNVx1ZDU3NFx1YzgzOCBcdWM3ODhcdWM3NDQgXHViNTRjIFx1YWUzMFx1YzZiOFx1YWUzMFx1YjljYyBcdWM4MTVcdWQ1NzQuIFx1YjYxMCwgXHViYWE4XHViNGUwIFx1YzgxMFx1Yzc1OCAkeCRcdWM4OGNcdWQ0NWNcdWIyOTQgXHVjNTkxXHVjNzU4IFx1YzgxNVx1YzIxOCwgJHkkXHVjODhjXHVkNDVjXHViM2M0IFx1YzgxNVx1YzIxOFx1Yjc3Y1x1YWNlMCBcdWFjMDBcdWM4MTVcdWQ1NThcdWM3OTAuJnJkcXVvOzxcL3A+XHJcblxyXG48cD5cdWM3NzRcdWM4MWMgXHVjNzIwXHViOWJjXHVjNzc0XHVhYzAwIFx1ZDQ4MCBcdWJiMzhcdWM4MWNcdWIyOTQgXHViMmU0XHVjNzRjXHVhY2ZjIFx1YWMxOVx1YjJlNC4gXHVjOGZjXHVjNWI0XHVjOWM0ICRiJFx1YzVkMCBcdWIzMDBcdWQ1NzQgJGZfMyhhKSA9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uXFxlcHNpbG9uX2leMz1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm4oeV9pLWF4X2ktYileMyRcdWM3NzQgJDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWFjOGMgXHVkNTU4XHViMjk0IFx1YzJlNFx1YzIxOCAkYSRcdWI5N2MgJGFfMyRcdWM3NzRcdWI3N2NcdWFjZTAgXHVkNTYwIFx1YjU0YywgJGFfMyRcdWM3NDQgXHVhZDZjXHVkNTU4XHViYTc0IFx1YjQxY1x1YjJlNC48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Y2NhYiBcdWJjODhcdWM5ZjggXHVjOTA0XHVjNWQwIFx1YjM3MFx1Yzc3NFx1ZDEzMFx1Yzc1OCBcdWFjMWNcdWMyMThcdWI5N2MgXHVjNzU4XHViYmY4XHVkNTU4XHViMjk0IFx1YzgxNVx1YzIxOCAkbiRcdWFjZmMgJHkkIFx1YzgwOFx1ZDNiOFx1Yzc0NCBcdWM3NThcdWJiZjhcdWQ1NThcdWIyOTQgXHVjODE1XHVjMjE4ICRiJFx1YWMwMCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gJCgxXFxsZSBuXFxsZSAxMF41OyQgJC0xMF42XFxsZSBiXFxsZSAxMF42KSQ8XC9wPlxyXG5cclxuPHA+XHViNDUwIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWJkODBcdWQxMzAgJG4kXHVhYzFjXHVjNzU4IFx1YzkwNFx1YzVkMCBcdWFjNzhcdWNjZDAgXHVkNTVjIFx1YzkwNFx1YzVkMCBcdWQ1NThcdWIwOThcdWM1MjkgXHVjODEwXHVjNzU4IFx1Yzg4Y1x1ZDQ1Y1x1Yjk3YyBcdWIwOThcdWQwYzBcdWIwYjRcdWIyOTQgXHVjODE1XHVjMjE4ICR4X2kkXHVjNjQwICR5X2kkXHVjNzU4IFx1YWMxMlx1Yzc3NCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gJCgxXFxsZSB4X2lcXGxlIDEwXjY7JCAkLTEwXjZcXGxlIHlfaVxcbGUgMTBeNikkPFwvcD5cclxuXHJcbjxwPlx1Yzc3NFx1YjU0YywgXHVjMTFjXHViODVjIFx1YWMxOVx1Yzc0MCBcdWM4MTBcdWM3NzQgXHVjNWVjXHViN2VjIFx1YmM4OCBcdWM4ZmNcdWM1YjRcdWM5YzggXHVjMjE4IFx1Yzc4OFx1Yzc0Y1x1YzVkMCBcdWM3MjBcdWM3NThcdWQ1NThcdWI3N2MuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVjY2FiIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDAgJGZfMyhhKSRcdWM3NTggXHVhYzEyXHVjNzc0ICQwJFx1YzVkMCBcdWFjMDBcdWM3YTUgXHVhYzAwXHVhZTVkXHVhYzhjIFx1ZDU1OFx1YjI5NCAkYSQsIFx1Yzk4OSwgJGFfMyRcdWM3NDQgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWIyZjVcdWM3NzQgXHVjNWVjXHViN2VjIFx1YWMwMFx1YzljMFx1Yjc3Y1x1YmE3NCBcdWFkZjhcdWM5MTEgXHVjNTQ0XHViYjM0XHVhYzcwXHViMDk4IFx1ZDU1OFx1YjA5OCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YWMwMFx1YjJhNVx1ZDU1YyBcdWM4MTVcdWIyZjUgXHVjOTExIFx1Y2Q1Y1x1YzE4YyBcdWQ1NThcdWIwOTggXHVjNzc0XHVjMGMxXHVhY2ZjXHVjNzU4IFx1YzgwOFx1YjMwMFx1YzYyNFx1Y2MyOCBcdWI2MTBcdWIyOTQgXHVjMGMxXHViMzAwXHVjNjI0XHVjYzI4XHVhYzAwICQxMF57LTd9JCBcdWM3NzRcdWQ1NThcdWM3NzRcdWJhNzQgXHVjODE1XHViMmY1XHVjNzNjXHViODVjIFx1Yzc3OFx1YzgxNVx1YjQxY1x1YjJlNC48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4iLCJzdWJ0YXNrMSI6IjxwPiRiPTA7JCAkeV9pID0gMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrMiI6IjxwPiRiID0gMDskICQtMTBcXGxlIHlfaSBcXGxlIDEwJDxcL3A+XHJcbiIsInN1YnRhc2szIjoiPHA+JGI9MDskICR5X2k9eF9pJCBcdWQ2MzlcdWM3NDAgJHlfaT0gMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrNCI6IjxwPiRuIFxcbGUgMiQ8XC9wPlxyXG4iLCJzdWJ0YXNrNSI6IjxwPlx1Y2Q5NFx1YWMwMFx1YzgwMVx1Yzc3OCBcdWM4MWNcdWQ1NWMgXHVjODcwXHVhYzc0IFx1YzVjNlx1Yzc0YzxcL3A+XHJcbiIsInNhbXBsZV9leHBsYWluXzEiOiI8cD4kYT00JFx1Yzc3YyBcdWI1NGMsICRmKGEpPSgxMC00XFxjZG90IDMgLSAoLTIpKV4zICsgKDItNFxcY2RvdCAxIC0gKC0yKSleMz0gMCArIDAgPSAwJFx1YzczY1x1Yjg1YyAkMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YjJlNC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8yIjoiPHA+JGE9LVxcZnJhY3s3fXs1fSRcdWM3N2MgXHViNTRjLCAkZihhKSRcdWFjMDAmbmJzcDskMCRcdWM1ZDAgXHVhYzAwXHVjN2E1IFx1YWMwMFx1YWU1ZFx1YjJlNC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8zIjoiPHA+JGE9XFxmcmFjezF9ezE5fSBcXGxlZnQoIDUxIC0gMTE2IFxcc3FydFszXXtcXGZyYWN7Mn17MTlcXHNxcnR7MTk3Njl9LTk0NX19ICsgXFxzcXJ0WzNde1xcZnJhY3sxOVxcc3FydHsxOTc2OX0tOTQ1fXsyfX1cXHJpZ2h0KSRcdWM3N2MgXHViNTRjLCAkZihhKSRcdWFjMDAgJDAkXHVjNWQwIFx1YWMwMFx1YzdhNSBcdWFjMDBcdWFlNWRcdWIyZTQuPFwvcD5cclxuIn0seyJwcm9ibGVtX2lkIjoiMzE1MzIiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJMaW5lYXIgUmVncmVzc2lvbiBpcyBFWlBaIDMiLCJkZXNjcmlwdGlvbiI6IjxibG9ja3F1b3RlPlxyXG48cD5UaGlzIHByb2JsZW0sIGNvbXBhcmVkIHRvJm5ic3A7PGEgaHJlZj1cIlwvcHJvYmxlbVwvMzE1MzlcIj5MaW5lYXIgUmVncmVzc2lvbiBpcyBFWlBaIDQ8XC9hPiwgaXMgdGhlIHNhbWUgZXhjZXB0IGZvciB0aGUgZGVncmVlIG9mIHRoZSBleHByZXNzaW9uIHVzZWQgaW4gdGhlIHByb2JsZW0uPFwvcD5cclxuPFwvYmxvY2txdW90ZT5cclxuXHJcbjxwPll1cmltIGlzIHZlcnkgY29uZmlkZW50IGluIGxpbmVhciByZWdyZXNzaW9uLCB3aGljaCB3YXMgd2h5IHNoZSBkaWRuJnJzcXVvO3QgY29uY2VudHJhdGUgd2hlbiBEb25nd29vIHdhcyB0ZWFjaGluZyBhYm91dCBsaW5lYXIgcmVncmVzc2lvbiBpbiB0aGUgTWF0S29yIGNsdWIuIERvbmd3b28gZGlzYXBwcm92ZWQgb2YgdGhpcyBhbmQgZ2F2ZSBZdXJpbSB0d28gcHJvYmxlbXMsIHdoaWNoIHdlcmUgPGEgaHJlZj1cIlwvcHJvYmxlbVwvMjcyOTVcIj5MaW5lYXIgUmVncmVzc2lvbiBpcyBFWlBaIDE8XC9hPiZuYnNwO2FuZCA8YSBocmVmPVwiXC9wcm9ibGVtXC8yODY5MlwiPkxpbmVhciBSZWdyZXNzaW9uIGlzIEVaUFogMjxcL2E+LCBhbmQgWXVyaW0gc29sdmVkIGJvdGggcHJvYmxlbXMgZWFzaWx5LjxcL3A+XHJcblxyXG48cD5UaGUgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIG1ldGhvZCBpcyBhcyBmb2xsb3dzLiBHaXZlbiB0aGUgc2FtcGxlIHBvaW50cyAkKHhfMSx5XzEpICwoeF8yLHlfMikgLFxcY2RvdHMgLCh4X24seV9uKSQsIHRoZSBvYmplY3RpdmUgaXMgdG8gZmluZCBhIGxpbmVhciBmdW5jdGlvbiAkeT1heCtiJCB0aGF0IHByZWRpY3RzIHRoZSBmdW5jdGlvbiBiZXR3ZWVuICR4JCBhbmQgJHkkIGFzIGFjY3VyYXRlbHkgYXMgcG9zc2libGUuIFdlIGRlZmluZSAkXFxoYXR7eV9pfSQgYXMgdGhlIGVzdGltYXRlZCB2YWx1ZSBjYWxjdWxhdGVkIHVzaW5nIHRoZSB2YWx1ZSAkeF9pJCwgd2hpY2ggaXMgJFxcaGF0e3lfaX0gPWF4X2krYiQsIGFuZCB0aGUgcmVzaWR1YWwgJFxcZXBzaWxvbl9pJCBhcyB0aGUgYWN0dWFsIHZhbHVlICR5X2kkIHN1YnRyYWN0ZWQgYnkgdGhlIGVzdGltYXRlZCB2YWx1ZSAkXFxoYXR7eV9pfSQsIHdoaWNoIGVxdWFscyAkeV9pLVxcaGF0e3lfaX0kLjxcL3A+XHJcblxyXG48cD5UaGUgbW9zdCBjb21tb24gd2F5IHRvIGVzdGltYXRlIGlzIHRvIHVzZSB0aGUgT0xTIG1ldGhvZCwgd2hpY2ggaXMgZmluZGluZyByZWFsIG51bWJlcnMgJGEkIGFuZCAkYiQgdGhhdCBtYWtlcyB0aGUgc3VtIG9mIHRoZSBzcXVhcmVkIHJlc2lkdWFscywgd2hpY2ggaXMgJGZfMihhLGIpID1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm5cXGVwc2lsb25faV4yPVxcZGlzcGxheXN0eWxlXFxzdW1fe2k9MX1ebih5X2ktYXhfaS1iKV4yJCwgY2xvc2VzdCB0byAkMCQuPFwvcD5cclxuXHJcbjxwPkRvbmd3b28gd2VudCBmdXJ0aGVyIGFuZCBtYWRlIGEgcHJvYmxlbSB0byBmaW5kIHJlYWwgbnVtYmVycyAkYSQgYW5kICRiJCB0aGF0IG1ha2VzIHRoZSBzdW0gb2YgdGhlICRrJC10aCBwb3dlciBvZiByZXNpZHVhbHMsIHdoaWNoIGlzICRmX2soYSxiKSA9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uXFxlcHNpbG9uX2leaz1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm4oeV9pLWF4X2ktYileayQsIGNsb3Nlc3QgdG8gJDAkLjxcL3A+XHJcblxyXG48cD5ZdXJpbSwgdHJ5aW5nIHRvIHNvbHZlIHRoaXMgcHJvYmxlbSwgdGhvdWdodCBpdCB3YXMgdG9vIGRpZmZpY3VsdCBhbmQgYXNrZWQgRG9uZ3dvbyB0byBjaGFuZ2UgdGhlIHByb2JsZW0gYSBsaXR0bGUgZWFzaWVyLCBzbyBEb25nd29vIGFkZGVkIHRoZSBmb2xsb3dpbmcgY29uZGl0aW9ucy4gJmxkcXVvO1RyeSB0byBmaW5kICRhJCBhbmQgJGIkIG9ubHkgd2hlbiAkaz0zJC4gQWxzbywgZmluZCBvbmx5IHRoZSBzbG9wZSB3aGVuIHRoZSAkeSQtaW50ZXJjZXB0IGlzIGdpdmVuLiBBbHNvLCBzdXBwb3NlIHRoYXQgdGhlICR4JC1jb29yZGluYXRlcyBvZiBhbGwgcG9pbnRzIGFyZSBwb3NpdGl2ZSBpbnRlZ2VycywgYW5kIHRoZSAkeSQtY29vcmRpbmF0ZXMgb2YgYWxsIHBvaW50cyBhcmUgaW50ZWdlcnMuJnJkcXVvOzxcL3A+XHJcblxyXG48cD5XaXRoIHRoZXNlIGNvbmRpdGlvbnMsIFl1cmltIG5vdyBoYXMgdG8gZmluZCAkYV8zJCB3aGVyZSAkYV8zJCBpcyB0aGUgdmFsdWUgb2YgJGEkIHRoYXQgbWFrZXMgJGZfMyhhKSA9XFxkaXNwbGF5c3R5bGVcXHN1bV97aT0xfV5uXFxlcHNpbG9uX2leMz1cXGRpc3BsYXlzdHlsZVxcc3VtX3tpPTF9Xm4oeV9pLWF4X2ktYileMyQsIGNsb3Nlc3QgdG8gJDAkLCBnaXZlbiB0aGUgdmFsdWUgb2YgJGIkLjxcL3A+XHJcbiIsImlucHV0IjoiPHA+VGhlIGZpcnN0IGxpbmUgY29udGFpbnMgdHdvIGludGVnZXJzICRuJCBhbmQgJGIkLCBzZXBhcmF0ZWQgYnkgc3BhY2VzICQoMVxcbGUgblxcbGUgMTBeNTskICQtMTBeNlxcbGUgYlxcbGUgMTBeNikkICZuZGFzaDsgdGhlIG51bWJlciBvZiBzYW1wbGUgcG9pbnRzIGFuZCB0aGUgJHkkLWludGVyY2VwdC48XC9wPlxyXG5cclxuPHA+VGhlIG5leHQgJG4kIGxpbmVzIGVhY2ggY29udGFpbiB0d28gaW50ZWdlcnMgJHhfaSQgYW5kICR5X2kkLCBzZXBhcmF0ZWQgYnkgc3BhY2VzICQoMVxcbGUgeF9pXFxsZSAxMF42OyQgJC0xMF42XFxsZSB5X2lcXGxlIDEwXjYpJCAmbmRhc2g7IHRoZSBpbnRlZ2VycyBpbmRpY2F0aW5nIHRoZSBjb29yZGluYXRlcyBvZiB0aGUgJGkkLXRoIHNhbXBsZSBwb2ludC48XC9wPlxyXG5cclxuPHA+Tm90ZSB0aGF0IHRoZSBzYW1lIHBvaW50cyBjYW4gYmUgZ2l2ZW4gYXMgYSBzYW1wbGUgcG9pbnQgbXVsdGlwbGUgdGltZXMuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+T3V0cHV0IHRoZSB2YWx1ZSBvZiAkYV8zJCwgd2hpY2ggaXMgdGhlIHZhbHVlIG9mICRhJCB0aGF0IG1ha2VzICRmXzMoYSkkIGNsb3Nlc3QgdG8gJDAkLjxcL3A+XHJcblxyXG48cD5JZiB0aGVyZSBhcmUgbXVsdGlwbGUgYW5zd2Vycywgb3V0cHV0IGFueSBvbmUgb2YgdGhlbS48XC9wPlxyXG5cclxuPHA+VGhlIG91dHB1dCBpcyBjb25zaWRlcmVkIGFzIGEgY29ycmVjdCBhbnN3ZXIgaWYgdGhlIGFic29sdXRlIGVycm9yIG9yIHJlbGF0aXZlIGVycm9yIHdpdGggYXQgbGVhc3Qgb25lIG9mIHRoZSBwb3NzaWJsZSBjb3JyZWN0IGFuc3dlcnMgaXMgbGVzcyB0aGFuICQxMF57LTd9JC48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIwIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIiwic3VidGFzazEiOiI8cD4kYj0wOyQgJHlfaSA9IDAkPFwvcD5cclxuIiwic3VidGFzazIiOiI8cD4kYiA9IDA7JCAkLTEwXFxsZSB5X2kgXFxsZSAxMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrMyI6IjxwPiRiPTA7JCAkeV9pIFxcaW4mbmJzcDtcXHswLCB4X2lcXH0kPFwvcD5cclxuIiwic3VidGFzazQiOiI8cD4kbiBcXGxlIDIkPFwvcD5cclxuIiwic3VidGFzazUiOiI8cD5UaGVyZSBhcmUmbmJzcDtubyBhZGRpdGlvbmFsIHJlc3RyaWN0aW9ucy48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8xIjoiPHA+JGE9NCQgbWFrZXMmbmJzcDskZihhKT0oMTAtNFxcY2RvdCAzIC0gKC0yKSleMyArJm5ic3A7KDItNFxcY2RvdCAxJm5ic3A7LSAoLTIpKV4zPSAwICsgMCA9IDAkLCB3aGljaCBpcyZuYnNwO2Nsb3Nlc3QgdG8gJDAkLjxcL3A+XHJcbiIsInNhbXBsZV9leHBsYWluXzIiOiI8cD4kYT0tXFxmcmFjezd9ezV9JCBtYWtlcyZuYnNwOyRmKGEpJCBjbG9zZXN0IHRvICQwJC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8zIjoiPHA+JGE9XFxmcmFjezF9ezE5fSBcXGxlZnQoIDUxIC0gMTE2IFxcc3FydFszXXtcXGZyYWN7Mn17MTlcXHNxcnR7MTk3Njl9LTk0NX19ICsgXFxzcXJ0WzNde1xcZnJhY3sxOVxcc3FydHsxOTc2OX0tOTQ1fXsyfX1cXHJpZ2h0KSQgbWFrZXMgJGYoYSkkIGNsb3Nlc3QgdG8gJDAkLjxcL3A+XHJcbiJ9XQ==

출처

University > 고려대학교 > MatKor Cup > 제4회 고려대학교 MatKor Cup: 2024 Winter/Spring 연습 세션 PD번

채점 및 기타 정보

  • 예제는 채점하지 않는다.
(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /