I'm trying to iterate over a simple array using recursion. For this specific case, I'm trying to recreate .map() using recursion (without using .map()!. I currently am only pushing the last element in the original array, but I want to push all into the array.
function recursiveMap (arr, func) {
let newArr = [];
if (arr.length === 1){
newArr.push(func(arr));
}
else {
newArr.push(...recursiveMap(arr.slice(1),func));
}
return newArr;
}
7 Answers 7
You need to to use func on the current item, and spread the result of calling the function on the rest of the array:
function recursiveMap(arr, func) {
return arr.length ? [func(arr[0]), ...recursiveMap(arr.slice(1), func)] : [];
}
const arr = [1, 2, 3];
const result = recursiveMap(arr, n => n * 2);
console.log(result);
Comments
Your base case seems wrong. You will need to check for an empty array:
function recursiveMap (arr, func) {
let newArr = [];
if (arr.length === 0) {
// do nothing
} else {
newArr.push(func(arr[0]));
newArr.push(...recursiveMap(arr.slice(1),func));
}
return newArr;
}
Instead you will need to call func (on the first item) when there is at least one element.
Comments
With recursion, I find it is helpful to have the base case be the very first thing you check in your function, and short the execution there. The base case for map is if the array has 0 items, in which case you would return an empty array.
if you haven't seen it before let [a, ...b] is array destructuring and a becomes the first value with b holding the remaining array. You could do the same with slice.
function recursiveMap(arr, func){
if(arr.length == 0) return [];
let [first, ...rest] = arr;
return [func(first)].concat(recursiveMap(rest, func));
}
let test = [1,2,3,4,5,6,7];
console.log(recursiveMap(test, (item) => item * 2));
EDIT
Going back to your sample I see you clearly have seen destructuring before xD, sorry. Leaving it in the answer for future readers of the answer though.
1 Comment
Below are a few alternatives. Each recursiveMap
- does not mutate input
- produces a new array as output
- produces a valid result when an empty input is given,
[] - uses a single pure, functional expression
Destructuring assignment
const identity = x =>
x
const recursiveMap = (f = identity, [ x, ...xs ]) =>
x === undefined
? []
: [ f (x), ...recursiveMap (f, xs) ]
const square = (x = 0) =>
x * x
console.log (recursiveMap (square, [ 1, 2, 3, 4, 5 ]))
// [ 1, 4, 9, 16, 25 ]
Array slice
const identity = x =>
x
const recursiveMap = (f = identity, xs = []) =>
xs.length === 0
? []
: [ f (xs[0]), ...recursiveMap (f, xs.slice (1)) ]
const square = (x = 0) =>
x * x
console.log (recursiveMap (square, [ 1, 2, 3, 4, 5 ]))
// [ 1, 4, 9, 16, 25 ]
Additional parameter with default assignment – creates fewer intermediate values
const identity = x =>
x
const recursiveMap = (f = identity, xs = [], i = 0) =>
i >= xs.length
? []
: [ f (xs[i]) ] .concat (recursiveMap (f, xs, i + 1))
const square = (x = 0) =>
x * x
console.log (recursiveMap (square, [ 1, 2, 3, 4, 5 ]))
// [ 1, 4, 9, 16, 25 ]
Tail recursive (and cute)
const identity = x =>
x
const prepend = x => xs =>
[ x ] .concat (xs)
const compose = (f, g) =>
x => f (g (x))
const recursiveMap = (f = identity, [ x, ...xs ], then = identity) =>
x === undefined
? then ([])
: recursiveMap
( f
, xs
, compose (then, prepend (f (x)))
)
const square = (x = 0) =>
x * x
console.log (recursiveMap (square, [ 1, 2, 3, 4, 5 ]))
// [ 1, 4, 9, 16, 25 ]
// => undefined
recursiveMap (square, [ 1, 2, 3, 4, 5 ], console.log)
// [ 1, 4, 9, 16, 25 ]
// => undefined
recursiveMap (square, [ 1, 2, 3, 4, 5 ])
// => [ 1, 4, 9, 16, 25 ]
Derived from tail-recursive foldl – Note foldl chooses a similar technique used above: additional parameter with default assignment.
const identity = x =>
x
const foldl = (f = identity, acc = null, xs = [], i = 0) =>
i >= xs.length
? acc
: foldl
( f
, f (acc, xs[i])
, xs
, i + 1
)
const recursiveMap = (f = identity, xs = []) =>
foldl
( (acc, x) => acc .concat ([ f (x) ])
, []
, xs
)
const square = (x = 0) =>
x * x
console.log (recursiveMap (square, [ 1, 2, 3, 4, 5 ]))
// [ 1, 4, 9, 16, 25 ]
Comments
You could take another approach by using a third parameter for the collected values.
function recursiveMap(array, fn, result = []) {
if (!array.length) {
return result;
}
result.push(fn(array[0]));
return recursiveMap(array.slice(1), fn, result);
}
console.log(recursiveMap([1, 2, 3, 4, 5], x => x << 1));
console.log(recursiveMap([], x => x << 1));
3 Comments
welcome to Stack Overflow. You could either pass result to itself like in the following example:
function recursiveMap (arr, func,result=[]) {
if (arr.length === 0){
return result;
}
return recursiveMap(
arr.slice(1),
func,
result.concat([func(arr[0])])
);
}
console.log(recursiveMap([1,2,3,4],x=>(x===3)?['hello','world']:x+2));
Or define a recursive function in your function:
function recursiveMap (arr, func) {
const recur = (arr, func,result=[])=>
(arr.length === 0)
? result
: recur(
arr.slice(1),
func,
result.concat([func(arr[0])])
);
return recur(arr,func,[])
}
console.log(recursiveMap([1,2,3,4],x=>(x===3)?['hello','world']:x+2));
Add newArr.push(func(arr[0])); before calling again the function
function recursiveMap (arr, func) {
let newArr = [];
if (arr.length === 1){
newArr.push(func(arr));
}
else {
newArr.push(func(arr[0]));
newArr.push(...recursiveMap(arr.slice(1),func));
}
return newArr;
}
console.log(recursiveMap([1,2,3], function(a){return +a+2}))
Same but modified answer with bugs corrected
function recursiveMap (arr, func) {
let newArr = [];
if(arr.length){
newArr.push(func(arr[0]));
if(arr.length > 1){
newArr.push(...recursiveMap(arr.slice(1),func));
}
}
return newArr;
}
console.log(recursiveMap([1,2,3], function(a){return a+2}))
2 Comments
+a in your callback.