WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

SliceDistribution [proc,t]

represents the distribution of the process state at time t.

SliceDistribution [proc,{t1,,tk}]

represents the joint distribution of process states at times t1<<tk.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Possible Issues  
See Also
Related Guides
History
Cite this Page

SliceDistribution [proc,t]

represents the distribution of the process state at time t.

SliceDistribution [proc,{t1,,tk}]

represents the joint distribution of process states at times t1<<tk.

Details

  • SliceDistribution [proc,t] can be entered as proc[t].
  • SliceDistribution [proc,{t1,,tk}] can be entered as proc[{t1,,tk}].
  • For a random process xproc, its state at time t is a random variable x[t]proc[t], and its state at times t1, , tk is a random variable {x[t1],,x[tk]}proc[{t1,,tk}].
  • SliceDistribution will simplify to known special distributions whenever possible.
  • SliceDistribution can be used with such functions as Mean , CDF , and RandomVariate , etc.

Examples

open all close all

Basic Examples  (3)

Find a univariate slice distribution of a PoissonProcess :

Find a bivariate slice distribution of a WienerProcess :

Find a multivariate slice distribution of a moving-average time series:

It does not autoevaluate but behaves like a distribution:

Scope  (3)

Slice distribution behaves like a distribution:

Probability density function:

Characteristic function:

Moments:

Generate a set of pseudorandom numbers:

Slice distribution may autoevaluate to known distributions:

Slice distribution for an M/M/ queue:

Probability density function:

Cumulative distribution function:

Mean of the slice distribution:

Find the limit of the mean as t approaches :

This agrees with the mean of the corresponding StationaryDistribution :

As well as the mean system size in the steady state:

Properties & Relations  (2)

Slice distribution at infinity is StationaryDistribution :

Use implicit times for computing probabilities:

Obtain the same result using the slice distribution:

Compute an expectation using implicit time in the variable x[t]:

Obtain the same result using the slice distribution:

Possible Issues  (1)

For some continuous-time random processes, simulation of a slice distribution is not well defined:

The process path simulation between the origin and the end time depends on the choice of step:

The slice distribution simulations for a few step choices show the approximations of the exact slice distribution:

Wolfram Research (2012), SliceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SliceDistribution.html.

Text

Wolfram Research (2012), SliceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SliceDistribution.html.

CMS

Wolfram Language. 2012. "SliceDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SliceDistribution.html.

APA

Wolfram Language. (2012). SliceDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SliceDistribution.html

BibTeX

@misc{reference.wolfram_2025_slicedistribution, author="Wolfram Research", title="{SliceDistribution}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/SliceDistribution.html}", note=[Accessed: 05-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_slicedistribution, organization={Wolfram Research}, title={SliceDistribution}, year={2012}, url={https://reference.wolfram.com/language/ref/SliceDistribution.html}, note=[Accessed: 05-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /