WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

RandomFunction [proc,{tmin,tmax}]

generates a pseudorandom function from the process proc from tmin to tmax.

RandomFunction [proc,{tmin,tmax,dt}]

generates a pseudorandom function from tmin to tmax in steps of dt.

RandomFunction [proc,, n]

generates an ensemble of n pseudorandom functions.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Parametric Processes  
Queueing Processes  
Show More Show More
Finite Markov Processes  
Time Series Processes  
Stochastic Differential Equation Processes  
Transformations of Random Processes  
Options  
WorkingPrecision  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page

RandomFunction [proc,{tmin,tmax}]

generates a pseudorandom function from the process proc from tmin to tmax.

RandomFunction [proc,{tmin,tmax,dt}]

generates a pseudorandom function from tmin to tmax in steps of dt.

RandomFunction [proc,, n]

generates an ensemble of n pseudorandom functions.

Details and Options

  • RandomFunction returns a TemporalData object that can be used to extract several properties including the paths consisting of time-value pairs {{t1,x[t1]},}.
  • For discrete-time processes such as BinomialProcess or ARMAProcess , the step dt is taken to be 1.
  • For continuous-time processes with jumps, such as PoissonProcess and QueueingProcess , the step dt is random and given by the process itself.
  • For continuous-time processes without jumps, such as WienerProcess and ItoProcess , an explicit dt needs to be given.
  • RandomFunction gives a different random function whenever you run the Wolfram Language. You can start with a particular seed, using SeedRandom .
  • The following options can be given:
  • Method Automatic what method to use
    WorkingPrecision Automatic precision used in internal computations
  • With the setting WorkingPrecision->p, random numbers of precision p will be generated.
  • Special settings for Method are documented under the individual random process reference pages.

Examples

open all close all

Basic Examples  (5)

Simulate a discrete-time and discrete-state process:

Simulate a continuous-time and discrete-state process:

Simulate a discrete-time and continuous-state process:

Simulate a continuous-time and continuous-state process:

Simulate an ensemble of 10 paths:

Scope  (21)

Basic Uses  (6)

RandomFunction returns a TemporalData object:

Obtain the random path:

Simulate a vector-valued process:

Path up to time 10:

Visualize the path on the plane:

Estimate the parameters for a random process using a sample path:

Use a simulation to find the expected path:

Calculate the mean for each time stamp:

Use a simulation to find confidence bands for a random path:

Calculate the standard error bands for each time stamp:

Simulate an ensemble of 1000 paths:

Compute data slices from paths and plot their distribution shapes:

Compute slice distributions at the same time stamps and plot their distribution shapes:

Parametric Processes  (3)

Simulate a Bernoulli process:

Simulate a Wiener process:

Simulate a compound Poisson process with an exponential jump size distribution:

Queueing Processes  (2)

Simulate an M/M/1 queue with different arrival and service rates:

Simulate a closed queueing network:

Finite Markov Processes  (1)

Simulate a discrete-time finite Markov process:

Simulate a discrete-time hidden Markov process:

Time Series Processes  (5)

Simulate a moving-average process:

Simulate an autoregressive process:

Simulate an autoregressive moving-average process with given precision:

Simulate a few integrated autoregressive moving-average processes:

Simulate a vector-valued SARIMA time series:

Create a 3D sample path function with time:

The color function depends on time:

Stochastic Differential Equation Processes  (2)

Simulate an Ito process:

Simulate a Stratonovich process:

Transformations of Random Processes  (2)

Square of a Poisson process:

Simulate the process:

Sum of a Wiener process and a geometric Brownian motion process:

Simulate the process:

Options  (1)

WorkingPrecision  (1)

Generate a sample path with default machine precision:

Use WorkingPrecision to generate a sample path with higher precision:

Applications  (4)

Visualize a transformed process:

Simulate the process:

Simulate solutions of the stochastic differential equation :

Define the values of the parameters:

Simulate the Wiener process paths:

The solution as function of a path:

Estimate unknown slice distribution of a random process:

Probability density function of slice distribution is not known in closed form:

Generate a random sample of paths:

Extract values from all paths at time :

Visualize its probability density function:

Test if it fits a standard normal distribution:

Approximate an ARIMAProcess with fixed initial conditions by an ARMAProcess :

Use sample paths to assess the approximation:

Properties & Relations  (1)

RandomFunction generates a path for a random process:

Use RandomVariate to generate a sample for a time slice of the process:

Use Histogram to estimate probability density:

Possible Issues  (3)

The length of a step must be smaller than the domain length:

Use a step length less than 1 to get a sample path:

Continuous-time processes require a step to be specified:

Specify a step:

Discrete-time processes do not accept a step specification:

Step is 1 by default:

Neat Examples  (3)

Simulate a WienerProcess in two dimensions:

Simulate a symmetric random walk in 2D:

In 3D:

Simulate a weakly stationary three-dimensional ARMAProcess :

Non-weakly stationary process, starting at the origin:

Wolfram Research (2012), RandomFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomFunction.html.

Text

Wolfram Research (2012), RandomFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomFunction.html.

CMS

Wolfram Language. 2012. "RandomFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomFunction.html.

APA

Wolfram Language. (2012). RandomFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomFunction.html

BibTeX

@misc{reference.wolfram_2025_randomfunction, author="Wolfram Research", title="{RandomFunction}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/RandomFunction.html}", note=[Accessed: 06-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_randomfunction, organization={Wolfram Research}, title={RandomFunction}, year={2012}, url={https://reference.wolfram.com/language/ref/RandomFunction.html}, note=[Accessed: 06-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /