WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

JacobiNS [u,m]

gives the Jacobi elliptic function .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Identities and Simplifications  
Function Representations  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

JacobiNS [u,m]

gives the Jacobi elliptic function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • , where .
  • is a doubly periodic function in u with periods and , where is the elliptic integral EllipticK .
  • JacobiNS is a meromorphic function in both arguments.
  • For certain special arguments, JacobiNS automatically evaluates to exact values.
  • JacobiNS can be evaluated to arbitrary numerical precision.
  • JacobiNS automatically threads over lists.

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot the function over a subset of the reals:

Plot over a subset of the complexes:

Series expansions about the origin:

Scope  (34)

Numerical Evaluation  (5)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate JacobiNS efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix JacobiNS function using MatrixFunction :

Specific Values  (3)

Simple exact values are generated automatically:

Some poles of JacobiNS :

Find a local minimum of JacobiNS as a root of (d)/(dx)TemplateBox[{x, {1, /, 3}}, JacobiND]=0:

Visualization  (3)

Plot the JacobiNS functions for various parameter values:

Plot JacobiNS as a function of its parameter :

Plot the real part of TemplateBox[{z, {1, /, 2}}, JacobiNS]:

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, JacobiNS]:

Function Properties  (8)

JacobiNS is 4TemplateBox[{m}, EllipticK]-periodic along the real axis:

JacobiNS is 2ⅈTemplateBox[{{1, -, m}}, EllipticK]-periodic along the imaginary axis:

JacobiNS is an odd function in its first argument:

JacobiNS is not an analytic function:

It has both singularities and discontinuities:

TemplateBox[{x, 3}, JacobiNS] is neither nondecreasing nor nonincreasing:

TemplateBox[{x, m}, JacobiNS] is not injective for any fixed :

It is injective for :

JacobiNS is not surjective for any fixed :

JacobiNS is neither non-negative nor non-positive:

JacobiNS is neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Derivative with respect to :

Integration  (3)

Indefinite integral of JacobiNS :

Definite integral of an odd function over the interval centered at the origin is 0:

More integrals:

Series Expansions  (3)

Series expansion for TemplateBox[{x, {1, /, 3}}, JacobiNS]:

Plot the first three approximations for TemplateBox[{x, {1, /, 3}}, JacobiNS] around :

Taylor expansion for TemplateBox[{1, m}, JacobiNS]:

Plot the first three approximations for TemplateBox[{1, m}, JacobiNS] around :

JacobiNS can be applied to power series:

Function Identities and Simplifications  (3)

Parity transformation and periodicity relations are automatically applied:

Identity involving JacobiCS :

Argument simplifications:

Function Representations  (3)

Representation in terms of Csc of JacobiAmplitude :

Relation to other Jacobi elliptic functions:

TraditionalForm formatting:

Applications  (5)

Map a rectangle conformally onto the lower halfplane:

Solution of the pendulum equation:

Check the solution:

Plot solutions:

Closed form of iterates of the KatsuraFukuda map:

Compare the closed form with explicit iterations:

Plot a few hundred iterates:

Solution of the sinhGordon equation :

Check the solution:

Plot the solution:

Hierarchy of solutions of the nonlinear diffusion equation :

Verify these functions:

Properties & Relations  (2)

Compose with inverse functions:

Use PowerExpand to disregard multivaluedness of the inverse function:

Solve a transcendental equation:

Possible Issues  (2)

Machine-precision input may be insufficient to give the correct answer:

Currently only simple simplification rules are built in for Jacobi functions:

History

Introduced in 1988 (1.0)

Wolfram Research (1988), JacobiNS, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNS.html.

Text

Wolfram Research (1988), JacobiNS, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNS.html.

CMS

Wolfram Language. 1988. "JacobiNS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiNS.html.

APA

Wolfram Language. (1988). JacobiNS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiNS.html

BibTeX

@misc{reference.wolfram_2025_jacobins, author="Wolfram Research", title="{JacobiNS}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiNS.html}", note=[Accessed: 09-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_jacobins, organization={Wolfram Research}, title={JacobiNS}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiNS.html}, note=[Accessed: 09-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /