WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

JacobiCS [u,m]

gives the Jacobi elliptic function .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Identities and Simplifications  
Function Representations  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

JacobiCS [u,m]

gives the Jacobi elliptic function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • , where .
  • is a doubly periodic function in u with periods and , where is the elliptic integral EllipticK .
  • JacobiCS is a meromorphic function in both arguments.
  • For certain special arguments, JacobiCS automatically evaluates to exact values.
  • JacobiCS can be evaluated to arbitrary numerical precision.
  • JacobiCS automatically threads over lists.

Examples

open all close all

Basic Examples  (5)

Evaluate numerically:

Plot the function over a subset of the reals:

Plot over a subset of the complexes:

Series expansions at the origin:

Series expansion at a singular point:

Scope  (34)

Numerical Evaluation  (5)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate JacobiCS efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix JacobiCS function using MatrixFunction :

Specific Values  (3)

Simple exact values are generated automatically:

Some poles of JacobiCS :

Find a zero of TemplateBox[{x, {1, /, 3}}, JacobiCS]:

Visualization  (3)

Plot the JacobiCS functions for various parameter values:

Plot JacobiCS as a function of its parameter :

Plot the real part of TemplateBox[{z, {1, /, 2}}, JacobiCS]:

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, JacobiCS]:

Function Properties  (8)

JacobiCS is 2 TemplateBox[{m}, EllipticK]-periodic along the real axis:

JacobiCS is 4ⅈTemplateBox[{{1, -, m}}, EllipticK]-periodic along the imaginary axis:

JacobiCS is an odd function in its first argument:

JacobiCS is not an analytic function:

It has both singularities and discontinuities:

TemplateBox[{x, 3}, JacobiCS] is neither nondecreasing nor nonincreasing:

TemplateBox[{x, m}, JacobiCS] is not injective for any fixed :

It is injective for :

TemplateBox[{x, m}, JacobiCS] is not surjective for fixed :

It is surjective for :

JacobiCS is neither non-negative nor non-positive:

JacobiCS is neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Derivative with respect to :

Integration  (3)

Indefinite integral of JacobiCS :

Definite integral of an odd function over the interval centered at the origin is 0:

More integrals:

Series Expansions  (3)

Series expansion for TemplateBox[{x, {1, /, 3}}, JacobiCS]:

Plot the first three approximations for TemplateBox[{x, {1, /, 3}}, JacobiCS] around :

Taylor expansion for TemplateBox[{1, m}, JacobiCS]:

Plot the first three approximations for TemplateBox[{1, m}, JacobiCS] around :

JacobiCS can be applied to a power series:

Function Identities and Simplifications  (3)

Primary definition:

Parity transformation and periodicity relations are automatically applied:

Automatic argument simplifications:

Function Representations  (3)

Representation in terms of Cot of JacobiAmplitude :

Relation to other Jacobi elliptic functions:

TraditionalForm formatting:

Applications  (5)

Hierarchy of solutions of the nonlinear diffusion equation :

Check:

Flow lines in a rectangular region with a current flowing from the lowerright to the upperleft corner:

Conformal map from a unit triangle to the unit disk:

Show points before and after the map:

Solution of the sinhGordon equation :

Check the solution:

Plot the solution:

Construct lowpass elliptic filter for analog signal:

Compute filter ripple parameters and associate elliptic function parameter:

Use elliptic degree equation to find the ratio of the pass and the stop frequencies:

Compute corresponding stop frequency and elliptic parameters:

Compute ripple locations and poles and zeros of the transfer function:

Compute poles of the transfer function:

Assemble the transfer function:

Compare with the result of EllipticFilterModel :

Properties & Relations  (2)

Compose with inverse functions:

Use PowerExpand to disregard multivaluedness of the inverse function:

Solve a transcendental equation:

Possible Issues  (2)

Machine-precision input is insufficient to give the correct answer:

Currently only simple simplification rules are built in for Jacobi functions:

History

Introduced in 1988 (1.0)

Wolfram Research (1988), JacobiCS, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiCS.html.

Text

Wolfram Research (1988), JacobiCS, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiCS.html.

CMS

Wolfram Language. 1988. "JacobiCS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiCS.html.

APA

Wolfram Language. (1988). JacobiCS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiCS.html

BibTeX

@misc{reference.wolfram_2025_jacobics, author="Wolfram Research", title="{JacobiCS}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiCS.html}", note=[Accessed: 10-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_jacobics, organization={Wolfram Research}, title={JacobiCS}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiCS.html}, note=[Accessed: 10-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /