コンテンツにスキップ
Wikipedia

宇宙の形

出典: フリー百科事典『ウィキペディア(Wikipedia)』
印刷用ページはサポート対象外です。表示エラーが発生する可能性があります。ブラウザーのブックマークを更新し、印刷にはブラウザーの印刷機能を使用してください。
この記事は検証可能参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)
出典検索?"宇宙の形" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
(2008年3月)
科学データから検出された宇宙の構造
現代宇宙論
宇宙
ビッグバンブラックホール
宇宙の年齢
宇宙の年表
初期の宇宙
プランク時代
大統一時代
クォーク時代
ハドロン時代
レプトン時代
光子時代
ビッグバン原子核合成
インフレーション
暗黒時代
CBR
宇宙重力波背景放射 (Gravitational wave background)
宇宙マイクロ波背景放射
宇宙ニュートリノ背景
宇宙赤外線背景放射
膨張 - 未来
ハッブル–ルメートルの法則 · 赤方偏移
宇宙の加速膨張
FLRW計量 · フリードマン方程式
膨張する宇宙の未来
宇宙の終焉
熱的死
ビッグリップ
ビッグクランチ
ビッグバウンス
構造形成
宇宙の形
再電離 · 宇宙の構造形成 (英語版)
銀河の形成と進化
大規模構造
大クエーサー群
銀河フィラメント
超銀河団
銀河団
銀河群
局所銀河群
超空洞
多元宇宙論
成分
Λ-CDMモデル
バリオン物質 (英語版)
エネルギー
放射
ダークエネルギー
クインテッセンス
ファントムエネルギー
暗黒物質
コールドダークマター
ウォームダークマター (英語版)
ホットダークマター
ダークラディエーション
歴史
宇宙マイクロ波背景放射の発見 (英語版)
ビッグバン理論の歴史 (英語版)
ビッグバン理論の宗教的解釈 (英語版)
宇宙論の年表
観測
BOOMERanG
COBE
プランク
DES (英語版)
ユークリッド
LSST
SDSS
2dF
WMAP
科学者
マーク・アーロンソン (英語版)アルヴェーンアルファーBharadwajド・ジッターディッケEhlersアインシュタインエリスフリードマンガモフグースホーキングハッブルルメートルリンデマザーペンローズペンジアスルービンシュミットスムートスタロビンスキースタインハートSuntzeffスニャーエフリチャード・C・トールマンウィルソンゼルドビッチその他 (英語版)

宇宙の形(うちゅうのかたち、: shape of Universe)は、宇宙の幾何学を記述する宇宙物理学のテーマの一つのくだけた呼び名である。宇宙の幾何学は局所幾何と大域幾何の両方からなる。宇宙の形は、おおざっぱには曲率位相幾何学により分けられ、厳密にはその両方の範疇をはみ出ている。より形式には、このテーマは、どの3-多様体が、4次元の時空の共動座標 (英語版)の空間区分に対応するのかを調べることにある。

時空の形宇宙の曲率時空の曲率とも呼ばれる。

導入

宇宙の形の考え方は、2つに分けられる。1つは、宇宙のどこでも、とりわけ観測可能な宇宙の曲率に関連した局所幾何(: local geometry)であり、もう1つは、「観測可能とは限らない」宇宙全体の位相幾何学に関連した大域幾何(: global geometry)である。

宇宙研究者は、通常、共動座標系と呼ばれる、時空の空間的スライスを扱う。観測の点からは、観測可能な時空の区分とは、後方の光円錐(任意の観測者に届く時空を示す宇宙光の地平面の内側)である。距離測度 (英語版)の項を参照されたい。関連する用語であるハッブル体積は、過去の光円錐か、最後に散乱した表面に一致する共動空間を示すために利用される。特殊相対性理論の観点からは、同時性の課題のため、「(ある時点の)宇宙の形」という考え方は認識が甘い。同時性の課題からは、「異なる場所で、同時に」という表現は許容されないため、「さまざまな場所の、ある時点における」宇宙の形という表現も許容されない。

もし観測可能な宇宙が、宇宙全体より小さい[1] なら、観測者は観測により宇宙全体の構造を決定することは、かなわない。観測可能な宇宙は小さなパッチにすぎない。また、もし観測可能な宇宙が宇宙全体であるなら、観測者は観測により宇宙全体の構造を決定できる。さらに、もし宇宙が(シリンダーのように)ある次元では小さく、またある次元ではそうではない、つまり小さな閉じたループであるなら、観測者は宇宙に多面的な像を見るだろう。

空間の曲率に依拠した局所幾何の宇宙模型

局所幾何は、(十分に大きな尺度である)観測可能な宇宙における、任意の点の曲率である。超新星宇宙マイクロ波背景放射といった、多くの天文学的観測は、観測可能な宇宙は、ほぼ一様・等方であり、また加速膨張していることを示している。

宇宙の FLRW 模型

一般相対性理論では、局所幾何は、フリードマン・ルメートル・ロバートソン・ウォーカー計量により表される。この模型はフリードマン方程式により表され、流体力学に基づいた—すなわち宇宙を完全流体として解釈した—宇宙の曲率(しばしば「幾何」とも)をもたらす。恒星や質量の構造「ほぼFLRW」な模型が利用されるが、観測可能な宇宙の局所幾何の推定には、厳密なFLRW模型が利用される。

言い換えると、すべてのダークエネルギーが無視されるなら、またすべての物質は(銀河のような「濃いめ」の物質によりゆがめられているのではなく)均一に分布している仮定すると、宇宙の曲率は、宇宙に存在する物質の平均密度を評価することにより決定される。

この仮定は、以下のような観測により支持されている。宇宙の不均質性(異質性とも)と異方性は弱く、おおむね均質的・等方的である。

均質・等方な宇宙は、曲率定数 (英語版)のある空間幾何を可能にする。一般相対性理論とFLRW模型からは、局所幾何における密度変数オメガ (Ω) は、空間の曲率に関係しているということが、示唆される。オメガは、宇宙を臨界エネルギー密度で除した宇宙の平均密度である。すなわちΩが1であれば、宇宙は平坦(曲率0)である。

空間の曲率は、空間座標においてピタゴラスの定理が有効であるか否かの、数学的に表す。以下の例では、局所的な長さの関連を表すために、ピタゴラスの定理の代わりとなる式が必要である。

  • 曲率0 (Ω=1) ピタゴラスの定理は有効
  • Ω>1 曲率は正
  • Ω <1 曲率は負

Ω=1以外では、ピタゴラスの定理は有効ではない。しかし差異が検出されるのは、三角形の一辺の長さが1026 メートル程度の尺の場合のみである。

もし小さな円の外周と直径を測り、円周を直径で除するなら、3つの幾何ではすべて、πが得られる。しかし直径が大きくなると、Ω=1以外の空間では、この商はπから離れる。

  • Ω>1 商はπより小さくなる。実際、球の上で得られる最も大きな円では、円周は直径の2倍となる。
  • Ω<1 商はπより大きくなる。

超新星事象を利用した宇宙と時空の物質-エネルギー密度の天文学的測定は、空間の曲率は0に近いことを示唆している。これは、時空の局所幾何は時空の間隔に基づいた相対性原理により導かれるが、近似的に有名なユークリッド幾何学による3空間から導くこともできる、ということを意味している。

12面体構造模型

ジャン・ピエール・ルミネは宇宙背景放射のデータから曲がった正五角形による12面体構造をしていると主張している[2]

位相幾何学に依拠した大域幾何の宇宙模型

[icon]
この節の加筆が望まれています。 (2017年12月)

脚注

  1. ^ いくつかの模型では、観測可能な宇宙は、宇宙全体と比べて、桁外れに小さい
  2. ^ Luminet, Jean-Pierre (2005). "A cosmic hall of mirrors". Physics World 18 (9): 23. arXiv:physics/0509171 . http://stacks.iop.org/2058-7058/18/i=9/a=28 . 

AltStyle によって変換されたページ (->オリジナル) /