Jump to content
Wikipedia The Free Encyclopedia

Vector spherical harmonics

From Wikipedia, the free encyclopedia
Extension of the scalar spherical harmonics for use with vector fields
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (May 2025) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (May 2025) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

Definition

[edit ]

Several conventions have been used to define the VSH.[1] [2] [3] [4] [5] We follow that of Barrera et al.. Given a scalar spherical harmonic Ylm(θ, φ), we define three VSH:

  • Y m = Y m r ^ , {\displaystyle \mathbf {Y} _{\ell m}=Y_{\ell m}{\hat {\mathbf {r} }},} {\displaystyle \mathbf {Y} _{\ell m}=Y_{\ell m}{\hat {\mathbf {r} }},}
  • Ψ m = r Y m , {\displaystyle \mathbf {\Psi } _{\ell m}=r\nabla Y_{\ell m},} {\displaystyle \mathbf {\Psi } _{\ell m}=r\nabla Y_{\ell m},}
  • Φ m = r × Y m , {\displaystyle \mathbf {\Phi } _{\ell m}=\mathbf {r} \times \nabla Y_{\ell m},} {\displaystyle \mathbf {\Phi } _{\ell m}=\mathbf {r} \times \nabla Y_{\ell m},}

with r ^ {\displaystyle {\hat {\mathbf {r} }}} {\displaystyle {\hat {\mathbf {r} }}} being the unit vector along the radial direction in spherical coordinates and r {\displaystyle \mathbf {r} } {\displaystyle \mathbf {r} } the vector along the radial direction with the same norm as the radius, i.e., r = r r ^ {\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}} {\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}. The radial factors are included to guarantee that the dimensions of the VSH are the same as those of the ordinary spherical harmonics and that the VSH do not depend on the radial spherical coordinate.

The interest of these new vector fields is to separate the radial dependence from the angular one when using spherical coordinates, so that a vector field admits a multipole expansion

E = = 0 m = ( E m r ( r ) Y m + E m ( 1 ) ( r ) Ψ m + E m ( 2 ) ( r ) Φ m ) . {\displaystyle \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left(E_{\ell m}^{r}(r)\mathbf {Y} _{\ell m}+E_{\ell m}^{(1)}(r)\mathbf {\Psi } _{\ell m}+E_{\ell m}^{(2)}(r)\mathbf {\Phi } _{\ell m}\right).} {\displaystyle \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left(E_{\ell m}^{r}(r)\mathbf {Y} _{\ell m}+E_{\ell m}^{(1)}(r)\mathbf {\Psi } _{\ell m}+E_{\ell m}^{(2)}(r)\mathbf {\Phi } _{\ell m}\right).}

The labels on the components reflect that E m r {\displaystyle E_{\ell m}^{r}} {\displaystyle E_{\ell m}^{r}} is the radial component of the vector field, while E m ( 1 ) {\displaystyle E_{\ell m}^{(1)}} {\displaystyle E_{\ell m}^{(1)}} and E m ( 2 ) {\displaystyle E_{\ell m}^{(2)}} {\displaystyle E_{\ell m}^{(2)}} are transverse components (with respect to the radius vector r {\displaystyle \mathbf {r} } {\displaystyle \mathbf {r} }).

In physics

[edit ]

In physics, the vector spherical harmonics Y j , , s m j {\displaystyle \mathbf {Y} _{j,\ell ,s}^{m_{j}}} {\displaystyle \mathbf {Y} _{j,\ell ,s}^{m_{j}}}are defined as spin s = 1 {\textstyle s=1} {\textstyle s=1} eigenfunctions of the angular momentum operators J 2 , J z , L 2 {\textstyle J^{2},J_{z},L^{2}} {\textstyle J^{2},J_{z},L^{2}}, and S 2 {\textstyle S^{2}} {\textstyle S^{2}}, where J = L + S {\textstyle \mathbf {J} =\mathbf {L} +\mathbf {S} } {\textstyle \mathbf {J} =\mathbf {L} +\mathbf {S} } is the total angular momentum.[6] They are written as Y j , , 1 m j ( k ) = m = +   m s = 1 + 1 j   m j |   1   m   m s Y m ( k ) e ^ m s , {\displaystyle \mathbf {Y} _{j,\ell ,1}^{m_{j}}(\mathbf {k} )=\sum _{m_{\ell },円=,円-\ell }^{+\ell }~\sum _{m_{s},円=,円-1}^{+1}\langle j~m_{j}|\ell ~1~m_{\ell }~m_{s}\rangle Y_{\ell }^{m_{\ell }}(\mathbf {k} ),円{\hat {\mathbf {e} }}_{m_{s}},} {\displaystyle \mathbf {Y} _{j,\ell ,1}^{m_{j}}(\mathbf {k} )=\sum _{m_{\ell },円=,円-\ell }^{+\ell }~\sum _{m_{s},円=,円-1}^{+1}\langle j~m_{j}|\ell ~1~m_{\ell }~m_{s}\rangle Y_{\ell }^{m_{\ell }}(\mathbf {k} ),円{\hat {\mathbf {e} }}_{m_{s}},}which are linear combinations of the scalar spherical harmonics Y m {\displaystyle Y_{\ell }^{m_{\ell }}} {\displaystyle Y_{\ell }^{m_{\ell }}} with the vector angular momentum basis e ^ ± 1 = x ^ ± i y ^ 2 , e ^ 0 = z ^ . {\displaystyle {\hat {\mathbf {e} }}_{\pm 1}=\mp {\frac {{\hat {\mathbf {x} }}\pm i{\hat {\mathbf {y} }}}{\sqrt {2}}},\quad {\hat {\mathbf {e} }}_{0}={\hat {\mathbf {z} }}.} {\displaystyle {\hat {\mathbf {e} }}_{\pm 1}=\mp {\frac {{\hat {\mathbf {x} }}\pm i{\hat {\mathbf {y} }}}{\sqrt {2}}},\quad {\hat {\mathbf {e} }}_{0}={\hat {\mathbf {z} }}.}using the Clebsch-Gordan coefficients j   m j |   1   m   m s {\displaystyle \langle j~m_{j}|\ell ~1~m_{\ell }~m_{s}\rangle } {\displaystyle \langle j~m_{j}|\ell ~1~m_{\ell }~m_{s}\rangle }.

Because vector bosons such as the photon are spin-one, the vector spherical harmonics are commonly used in physics to describe vector and pseudovector interactions, such as electromagnetic transitions, in atomic and nuclear systems. They are a special ( s = 1 {\textstyle s=1} {\textstyle s=1}) case of the spin spherical harmonics.

Main properties

[edit ]

Symmetry

[edit ]

Like the scalar spherical harmonics, the VSH satisfy

Y , m = ( 1 ) m Y m , Ψ , m = ( 1 ) m Ψ m , Φ , m = ( 1 ) m Φ m , {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell ,-m}&=(-1)^{m}\mathbf {Y} _{\ell m}^{*},\\\mathbf {\Psi } _{\ell ,-m}&=(-1)^{m}\mathbf {\Psi } _{\ell m}^{*},\\\mathbf {\Phi } _{\ell ,-m}&=(-1)^{m}\mathbf {\Phi } _{\ell m}^{*},\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell ,-m}&=(-1)^{m}\mathbf {Y} _{\ell m}^{*},\\\mathbf {\Psi } _{\ell ,-m}&=(-1)^{m}\mathbf {\Psi } _{\ell m}^{*},\\\mathbf {\Phi } _{\ell ,-m}&=(-1)^{m}\mathbf {\Phi } _{\ell m}^{*},\end{aligned}}}

which cuts the number of independent functions roughly in half. The star indicates complex conjugation.

Orthogonality

[edit ]

The VSH are orthogonal in the usual three-dimensional way at each point r {\displaystyle \mathbf {r} } {\displaystyle \mathbf {r} }:

Y m ( r ) Ψ m ( r ) = 0 , Y m ( r ) Φ m ( r ) = 0 , Ψ m ( r ) Φ m ( r ) = 0. {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Psi } _{\ell m}(\mathbf {r} )&=0,\\\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell m}(\mathbf {r} )&=0,\\\mathbf {\Psi } _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell m}(\mathbf {r} )&=0.\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Psi } _{\ell m}(\mathbf {r} )&=0,\\\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell m}(\mathbf {r} )&=0,\\\mathbf {\Psi } _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell m}(\mathbf {r} )&=0.\end{aligned}}}

They are also orthogonal in Hilbert space:

Y m Y m d Ω = δ δ m m , Ψ m Ψ m d Ω = ( + 1 ) δ δ m m , Φ m Φ m d Ω = ( + 1 ) δ δ m m , Y m Ψ m d Ω = 0 , Y m Φ m d Ω = 0 , Ψ m Φ m d Ω = 0. {\displaystyle {\begin{aligned}\int \mathbf {Y} _{\ell m}\cdot \mathbf {Y} _{\ell 'm'}^{*},円d\Omega &=\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {\Psi } _{\ell m}\cdot \mathbf {\Psi } _{\ell 'm'}^{*},円d\Omega &=\ell (\ell +1)\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {\Phi } _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=\ell (\ell +1)\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {Y} _{\ell m}\cdot \mathbf {\Psi } _{\ell 'm'}^{*},円d\Omega &=0,\\\int \mathbf {Y} _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=0,\\\int \mathbf {\Psi } _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=0.\end{aligned}}} {\displaystyle {\begin{aligned}\int \mathbf {Y} _{\ell m}\cdot \mathbf {Y} _{\ell 'm'}^{*},円d\Omega &=\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {\Psi } _{\ell m}\cdot \mathbf {\Psi } _{\ell 'm'}^{*},円d\Omega &=\ell (\ell +1)\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {\Phi } _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=\ell (\ell +1)\delta _{\ell \ell '}\delta _{mm'},\\\int \mathbf {Y} _{\ell m}\cdot \mathbf {\Psi } _{\ell 'm'}^{*},円d\Omega &=0,\\\int \mathbf {Y} _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=0,\\\int \mathbf {\Psi } _{\ell m}\cdot \mathbf {\Phi } _{\ell 'm'}^{*},円d\Omega &=0.\end{aligned}}}

An additional result at a single point r {\displaystyle \mathbf {r} } {\displaystyle \mathbf {r} } (not reported in Barrera et al, 1985) is, for all , m , , m {\displaystyle \ell ,m,\ell ',m'} {\displaystyle \ell ,m,\ell ',m'},

Y m ( r ) Ψ m ( r ) = 0 , Y m ( r ) Φ m ( r ) = 0. {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Psi } _{\ell 'm'}(\mathbf {r} )&=0,\\\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell 'm'}(\mathbf {r} )&=0.\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Psi } _{\ell 'm'}(\mathbf {r} )&=0,\\\mathbf {Y} _{\ell m}(\mathbf {r} )\cdot \mathbf {\Phi } _{\ell 'm'}(\mathbf {r} )&=0.\end{aligned}}}

Vector multipole moments

[edit ]

The orthogonality relations allow one to compute the spherical multipole moments of a vector field as

E m r = E Y m d Ω , E m ( 1 ) = 1 ( + 1 ) E Ψ m d Ω , E m ( 2 ) = 1 ( + 1 ) E Φ m d Ω . {\displaystyle {\begin{aligned}E_{\ell m}^{r}&=\int \mathbf {E} \cdot \mathbf {Y} _{\ell m}^{*},円d\Omega ,\\E_{\ell m}^{(1)}&={\frac {1}{\ell (\ell +1)}}\int \mathbf {E} \cdot \mathbf {\Psi } _{\ell m}^{*},円d\Omega ,\\E_{\ell m}^{(2)}&={\frac {1}{\ell (\ell +1)}}\int \mathbf {E} \cdot \mathbf {\Phi } _{\ell m}^{*},円d\Omega .\end{aligned}}} {\displaystyle {\begin{aligned}E_{\ell m}^{r}&=\int \mathbf {E} \cdot \mathbf {Y} _{\ell m}^{*},円d\Omega ,\\E_{\ell m}^{(1)}&={\frac {1}{\ell (\ell +1)}}\int \mathbf {E} \cdot \mathbf {\Psi } _{\ell m}^{*},円d\Omega ,\\E_{\ell m}^{(2)}&={\frac {1}{\ell (\ell +1)}}\int \mathbf {E} \cdot \mathbf {\Phi } _{\ell m}^{*},円d\Omega .\end{aligned}}}

The gradient of a scalar field

[edit ]

Given the multipole expansion of a scalar field

ϕ = = 0 m = ϕ m ( r ) Y m ( θ , ϕ ) , {\displaystyle \phi =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\phi _{\ell m}(r)Y_{\ell m}(\theta ,\phi ),} {\displaystyle \phi =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\phi _{\ell m}(r)Y_{\ell m}(\theta ,\phi ),}

we can express its gradient in terms of the VSH as

ϕ = = 0 m = ( d ϕ m d r Y m + ϕ m r Ψ m ) . {\displaystyle \nabla \phi =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left({\frac {d\phi _{\ell m}}{dr}}\mathbf {Y} _{\ell m}+{\frac {\phi _{\ell m}}{r}}\mathbf {\Psi } _{\ell m}\right).} {\displaystyle \nabla \phi =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left({\frac {d\phi _{\ell m}}{dr}}\mathbf {Y} _{\ell m}+{\frac {\phi _{\ell m}}{r}}\mathbf {\Psi } _{\ell m}\right).}

Divergence

[edit ]

For any multipole field we have

( f ( r ) Y m ) = ( d f d r + 2 r f ) Y m , ( f ( r ) Ψ m ) = ( + 1 ) r f Y m , ( f ( r ) Φ m ) = 0. {\displaystyle {\begin{aligned}\nabla \cdot \left(f(r)\mathbf {Y} _{\ell m}\right)&=\left({\frac {df}{dr}}+{\frac {2}{r}}f\right)Y_{\ell m},\\\nabla \cdot \left(f(r)\mathbf {\Psi } _{\ell m}\right)&=-{\frac {\ell (\ell +1)}{r}}fY_{\ell m},\\\nabla \cdot \left(f(r)\mathbf {\Phi } _{\ell m}\right)&=0.\end{aligned}}} {\displaystyle {\begin{aligned}\nabla \cdot \left(f(r)\mathbf {Y} _{\ell m}\right)&=\left({\frac {df}{dr}}+{\frac {2}{r}}f\right)Y_{\ell m},\\\nabla \cdot \left(f(r)\mathbf {\Psi } _{\ell m}\right)&=-{\frac {\ell (\ell +1)}{r}}fY_{\ell m},\\\nabla \cdot \left(f(r)\mathbf {\Phi } _{\ell m}\right)&=0.\end{aligned}}}

By superposition we obtain the divergence of any vector field:

E = = 0 m = ( d E m r d r + 2 r E m r ( + 1 ) r E m ( 1 ) ) Y m . {\displaystyle \nabla \cdot \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left({\frac {dE_{\ell m}^{r}}{dr}}+{\frac {2}{r}}E_{\ell m}^{r}-{\frac {\ell (\ell +1)}{r}}E_{\ell m}^{(1)}\right)Y_{\ell m}.} {\displaystyle \nabla \cdot \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left({\frac {dE_{\ell m}^{r}}{dr}}+{\frac {2}{r}}E_{\ell m}^{r}-{\frac {\ell (\ell +1)}{r}}E_{\ell m}^{(1)}\right)Y_{\ell m}.}

We see that the component on Φlm is always solenoidal.

Curl

[edit ]

For any multipole field we have

× ( f ( r ) Y m ) = 1 r f Φ m , × ( f ( r ) Ψ m ) = ( d f d r + 1 r f ) Φ m , × ( f ( r ) Φ m ) = ( + 1 ) r f Y m ( d f d r + 1 r f ) Ψ m . {\displaystyle {\begin{aligned}\nabla \times \left(f(r)\mathbf {Y} _{\ell m}\right)&=-{\frac {1}{r}}f\mathbf {\Phi } _{\ell m},\\\nabla \times \left(f(r)\mathbf {\Psi } _{\ell m}\right)&=\left({\frac {df}{dr}}+{\frac {1}{r}}f\right)\mathbf {\Phi } _{\ell m},\\\nabla \times \left(f(r)\mathbf {\Phi } _{\ell m}\right)&=-{\frac {\ell (\ell +1)}{r}}f\mathbf {Y} _{\ell m}-\left({\frac {df}{dr}}+{\frac {1}{r}}f\right)\mathbf {\Psi } _{\ell m}.\end{aligned}}} {\displaystyle {\begin{aligned}\nabla \times \left(f(r)\mathbf {Y} _{\ell m}\right)&=-{\frac {1}{r}}f\mathbf {\Phi } _{\ell m},\\\nabla \times \left(f(r)\mathbf {\Psi } _{\ell m}\right)&=\left({\frac {df}{dr}}+{\frac {1}{r}}f\right)\mathbf {\Phi } _{\ell m},\\\nabla \times \left(f(r)\mathbf {\Phi } _{\ell m}\right)&=-{\frac {\ell (\ell +1)}{r}}f\mathbf {Y} _{\ell m}-\left({\frac {df}{dr}}+{\frac {1}{r}}f\right)\mathbf {\Psi } _{\ell m}.\end{aligned}}}

By superposition we obtain the curl of any vector field:

× E = = 0 m = ( ( + 1 ) r E m ( 2 ) Y m ( d E m ( 2 ) d r + 1 r E m ( 2 ) ) Ψ m + ( 1 r E m r + d E m ( 1 ) d r + 1 r E m ( 1 ) ) Φ m ) . {\displaystyle \nabla \times \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left(-{\frac {\ell (\ell +1)}{r}}E_{\ell m}^{(2)}\mathbf {Y} _{\ell m}-\left({\frac {dE_{\ell m}^{(2)}}{dr}}+{\frac {1}{r}}E_{\ell m}^{(2)}\right)\mathbf {\Psi } _{\ell m}+\left(-{\frac {1}{r}}E_{\ell m}^{r}+{\frac {dE_{\ell m}^{(1)}}{dr}}+{\frac {1}{r}}E_{\ell m}^{(1)}\right)\mathbf {\Phi } _{\ell m}\right).} {\displaystyle \nabla \times \mathbf {E} =\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }\left(-{\frac {\ell (\ell +1)}{r}}E_{\ell m}^{(2)}\mathbf {Y} _{\ell m}-\left({\frac {dE_{\ell m}^{(2)}}{dr}}+{\frac {1}{r}}E_{\ell m}^{(2)}\right)\mathbf {\Psi } _{\ell m}+\left(-{\frac {1}{r}}E_{\ell m}^{r}+{\frac {dE_{\ell m}^{(1)}}{dr}}+{\frac {1}{r}}E_{\ell m}^{(1)}\right)\mathbf {\Phi } _{\ell m}\right).}

Laplacian

[edit ]

The action of the Laplace operator Δ = {\displaystyle \Delta =\nabla \cdot \nabla } {\displaystyle \Delta =\nabla \cdot \nabla } separates as follows:

Δ ( f ( r ) Z m ) = ( 1 r 2 r r 2 f r ) Z m + f ( r ) Δ Z m , {\displaystyle \Delta \left(f(r)\mathbf {Z} _{\ell m}\right)=\left({\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}r^{2}{\frac {\partial f}{\partial r}}\right)\mathbf {Z} _{\ell m}+f(r)\Delta \mathbf {Z} _{\ell m},} {\displaystyle \Delta \left(f(r)\mathbf {Z} _{\ell m}\right)=\left({\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}r^{2}{\frac {\partial f}{\partial r}}\right)\mathbf {Z} _{\ell m}+f(r)\Delta \mathbf {Z} _{\ell m},} where Z m = Y m , Ψ m , Φ m {\displaystyle \mathbf {Z} _{\ell m}=\mathbf {Y} _{\ell m},\mathbf {\Psi } _{\ell m},\mathbf {\Phi } _{\ell m}} {\displaystyle \mathbf {Z} _{\ell m}=\mathbf {Y} _{\ell m},\mathbf {\Psi } _{\ell m},\mathbf {\Phi } _{\ell m}} and

Δ Y m = 1 r 2 ( 2 + ( + 1 ) ) Y m + 2 r 2 Ψ m , Δ Ψ m = 2 ( + 1 ) r 2 Y m 1 r 2 ( + 1 ) Ψ m , Δ Φ m = 1 r 2 ( + 1 ) Φ m . {\displaystyle {\begin{aligned}\Delta \mathbf {Y} _{\ell m}&=-{\frac {1}{r^{2}}}(2+\ell (\ell +1))\mathbf {Y} _{\ell m}+{\frac {2}{r^{2}}}\mathbf {\Psi } _{\ell m},\\\Delta \mathbf {\Psi } _{\ell m}&={\frac {2\ell (\ell +1)}{r^{2}}}\mathbf {Y} _{\ell m}-{\frac {1}{r^{2}}}\ell (\ell +1)\mathbf {\Psi } _{\ell m},\\\Delta \mathbf {\Phi } _{\ell m}&=-{\frac {1}{r^{2}}}\ell (\ell +1)\mathbf {\Phi } _{\ell m}.\end{aligned}}} {\displaystyle {\begin{aligned}\Delta \mathbf {Y} _{\ell m}&=-{\frac {1}{r^{2}}}(2+\ell (\ell +1))\mathbf {Y} _{\ell m}+{\frac {2}{r^{2}}}\mathbf {\Psi } _{\ell m},\\\Delta \mathbf {\Psi } _{\ell m}&={\frac {2\ell (\ell +1)}{r^{2}}}\mathbf {Y} _{\ell m}-{\frac {1}{r^{2}}}\ell (\ell +1)\mathbf {\Psi } _{\ell m},\\\Delta \mathbf {\Phi } _{\ell m}&=-{\frac {1}{r^{2}}}\ell (\ell +1)\mathbf {\Phi } _{\ell m}.\end{aligned}}}

Also note that this action becomes symmetric, i.e. the off-diagonal coefficients are equal to 2 r 2 ( + 1 ) {\textstyle {\frac {2}{r^{2}}}{\sqrt {\ell (\ell +1)}}} {\textstyle {\frac {2}{r^{2}}}{\sqrt {\ell (\ell +1)}}}, for properly normalized VSH.

Examples

[edit ]
Ψ 1 m {\displaystyle \mathbf {\Psi } _{1m}} {\displaystyle \mathbf {\Psi } _{1m}}
Ψ 2 m {\displaystyle \mathbf {\Psi } _{2m}} {\displaystyle \mathbf {\Psi } _{2m}}
Ψ 3 m {\displaystyle \mathbf {\Psi } _{3m}} {\displaystyle \mathbf {\Psi } _{3m}}
Φ 1 m {\displaystyle \mathbf {\Phi } _{1m}} {\displaystyle \mathbf {\Phi } _{1m}}
Φ 2 m {\displaystyle \mathbf {\Phi } _{2m}} {\displaystyle \mathbf {\Phi } _{2m}}
Φ 3 m {\displaystyle \mathbf {\Phi } _{3m}} {\displaystyle \mathbf {\Phi } _{3m}}
Visualizations of the real parts of = 1 , 2 , 3 {\displaystyle \ell =1,2,3} {\displaystyle \ell =1,2,3} VSHs. Click to expand.

First vector spherical harmonics

[edit ]
  • = 0 {\displaystyle \ell =0} {\displaystyle \ell =0}. Y 00 = 1 4 π r ^ , Ψ 00 = 0 , Φ 00 = 0 . {\displaystyle {\begin{aligned}\mathbf {Y} _{00}&={\sqrt {\frac {1}{4\pi }}}{\hat {\mathbf {r} }},\\\mathbf {\Psi } _{00}&=\mathbf {0} ,\\\mathbf {\Phi } _{00}&=\mathbf {0} .\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{00}&={\sqrt {\frac {1}{4\pi }}}{\hat {\mathbf {r} }},\\\mathbf {\Psi } _{00}&=\mathbf {0} ,\\\mathbf {\Phi } _{00}&=\mathbf {0} .\end{aligned}}}
  • = 1 {\displaystyle \ell =1} {\displaystyle \ell =1}. Y 10 = 3 4 π cos θ r ^ , Y 11 = 3 8 π e i φ sin θ r ^ , {\displaystyle {\begin{aligned}\mathbf {Y} _{10}&={\sqrt {\frac {3}{4\pi }}}\cos \theta ,円{\hat {\mathbf {r} }},\\\mathbf {Y} _{11}&=-{\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\sin \theta ,円{\hat {\mathbf {r} }},\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{10}&={\sqrt {\frac {3}{4\pi }}}\cos \theta ,円{\hat {\mathbf {r} }},\\\mathbf {Y} _{11}&=-{\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\sin \theta ,円{\hat {\mathbf {r} }},\end{aligned}}} Ψ 10 = 3 4 π sin θ θ ^ , Ψ 11 = 3 8 π e i φ ( cos θ θ ^ + i φ ^ ) , {\displaystyle {\begin{aligned}\mathbf {\Psi } _{10}&=-{\sqrt {\frac {3}{4\pi }}}\sin \theta ,円{\hat {\mathbf {\theta } }},\\\mathbf {\Psi } _{11}&=-{\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\left(\cos \theta ,円{\hat {\mathbf {\theta } }}+i,円{\hat {\mathbf {\varphi } }}\right),\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {\Psi } _{10}&=-{\sqrt {\frac {3}{4\pi }}}\sin \theta ,円{\hat {\mathbf {\theta } }},\\\mathbf {\Psi } _{11}&=-{\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\left(\cos \theta ,円{\hat {\mathbf {\theta } }}+i,円{\hat {\mathbf {\varphi } }}\right),\end{aligned}}} Φ 10 = 3 4 π sin θ φ ^ , Φ 11 = 3 8 π e i φ ( i θ ^ cos θ φ ^ ) . {\displaystyle {\begin{aligned}\mathbf {\Phi } _{10}&=-{\sqrt {\frac {3}{4\pi }}}\sin \theta ,円{\hat {\mathbf {\varphi } }},\\\mathbf {\Phi } _{11}&={\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\left(i,円{\hat {\mathbf {\theta } }}-\cos \theta ,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {\Phi } _{10}&=-{\sqrt {\frac {3}{4\pi }}}\sin \theta ,円{\hat {\mathbf {\varphi } }},\\\mathbf {\Phi } _{11}&={\sqrt {\frac {3}{8\pi }}}e^{i\varphi }\left(i,円{\hat {\mathbf {\theta } }}-\cos \theta ,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}}
  • = 2 {\displaystyle \ell =2} {\displaystyle \ell =2}. Y 20 = 1 4 5 π ( 3 cos 2 θ 1 ) r ^ , Y 21 = 15 8 π sin θ cos θ e i φ r ^ , Y 22 = 1 4 15 2 π sin 2 θ e 2 i φ r ^ . {\displaystyle {\begin{aligned}\mathbf {Y} _{20}&={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}},円(3\cos ^{2}\theta -1),円{\hat {\mathbf {r} }},\\\mathbf {Y} _{21}&=-{\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円\cos \theta ,円e^{i\varphi },円{\hat {\mathbf {r} }},\\\mathbf {Y} _{22}&={\frac {1}{4}}{\sqrt {\frac {15}{2\pi }}},円\sin ^{2}\theta ,円e^{2i\varphi },円{\hat {\mathbf {r} }}.\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {Y} _{20}&={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}},円(3\cos ^{2}\theta -1),円{\hat {\mathbf {r} }},\\\mathbf {Y} _{21}&=-{\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円\cos \theta ,円e^{i\varphi },円{\hat {\mathbf {r} }},\\\mathbf {Y} _{22}&={\frac {1}{4}}{\sqrt {\frac {15}{2\pi }}},円\sin ^{2}\theta ,円e^{2i\varphi },円{\hat {\mathbf {r} }}.\end{aligned}}} Ψ 20 = 3 2 5 π sin θ cos θ θ ^ , Ψ 21 = 15 8 π e i φ ( cos 2 θ θ ^ + i cos θ φ ^ ) , Ψ 22 = 15 8 π sin θ e 2 i φ ( cos θ θ ^ + i φ ^ ) . {\displaystyle {\begin{aligned}\mathbf {\Psi } _{20}&=-{\frac {3}{2}}{\sqrt {\frac {5}{\pi }}},円\sin \theta ,円\cos \theta ,円{\hat {\mathbf {\theta } }},\\\mathbf {\Psi } _{21}&=-{\sqrt {\frac {15}{8\pi }}},円e^{i\varphi },円\left(\cos 2\theta ,円{\hat {\mathbf {\theta } }}+i\cos \theta ,円{\hat {\mathbf {\varphi } }}\right),\\\mathbf {\Psi } _{22}&={\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円e^{2i\varphi },円\left(\cos \theta ,円{\hat {\mathbf {\theta } }}+i,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {\Psi } _{20}&=-{\frac {3}{2}}{\sqrt {\frac {5}{\pi }}},円\sin \theta ,円\cos \theta ,円{\hat {\mathbf {\theta } }},\\\mathbf {\Psi } _{21}&=-{\sqrt {\frac {15}{8\pi }}},円e^{i\varphi },円\left(\cos 2\theta ,円{\hat {\mathbf {\theta } }}+i\cos \theta ,円{\hat {\mathbf {\varphi } }}\right),\\\mathbf {\Psi } _{22}&={\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円e^{2i\varphi },円\left(\cos \theta ,円{\hat {\mathbf {\theta } }}+i,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}} Φ 20 = 3 2 5 π sin θ cos θ φ ^ , Φ 21 = 15 8 π e i φ ( i cos θ θ ^ cos 2 θ φ ^ ) , Φ 22 = 15 8 π sin θ e 2 i φ ( i θ ^ + cos θ φ ^ ) . {\displaystyle {\begin{aligned}\mathbf {\Phi } _{20}&=-{\frac {3}{2}}{\sqrt {\frac {5}{\pi }}}\sin \theta ,円\cos \theta ,円{\hat {\mathbf {\varphi } }},\\\mathbf {\Phi } _{21}&={\sqrt {\frac {15}{8\pi }}},円e^{i\varphi },円\left(i\cos \theta ,円{\hat {\mathbf {\theta } }}-\cos 2\theta ,円{\hat {\mathbf {\varphi } }}\right),\\\mathbf {\Phi } _{22}&={\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円e^{2i\varphi },円\left(-i,円{\hat {\mathbf {\theta } }}+\cos \theta ,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {\Phi } _{20}&=-{\frac {3}{2}}{\sqrt {\frac {5}{\pi }}}\sin \theta ,円\cos \theta ,円{\hat {\mathbf {\varphi } }},\\\mathbf {\Phi } _{21}&={\sqrt {\frac {15}{8\pi }}},円e^{i\varphi },円\left(i\cos \theta ,円{\hat {\mathbf {\theta } }}-\cos 2\theta ,円{\hat {\mathbf {\varphi } }}\right),\\\mathbf {\Phi } _{22}&={\sqrt {\frac {15}{8\pi }}},円\sin \theta ,円e^{2i\varphi },円\left(-i,円{\hat {\mathbf {\theta } }}+\cos \theta ,円{\hat {\mathbf {\varphi } }}\right).\end{aligned}}}

Expressions for negative values of m are obtained by applying the symmetry relations.

Applications

[edit ]

Electrodynamics

[edit ]

The VSH are especially useful in the study of multipole radiation fields. For instance, a magnetic multipole is due to an oscillating current with angular frequency ω {\displaystyle \omega } {\displaystyle \omega } and complex amplitude

J ^ = J ( r ) Φ m , {\displaystyle {\hat {\mathbf {J} }}=J(r)\mathbf {\Phi } _{\ell m},} {\displaystyle {\hat {\mathbf {J} }}=J(r)\mathbf {\Phi } _{\ell m},}

and the corresponding electric and magnetic fields, can be written as

E ^ = E ( r ) Φ m , B ^ = B r ( r ) Y m + B ( 1 ) ( r ) Ψ m . {\displaystyle {\begin{aligned}{\hat {\mathbf {E} }}&=E(r)\mathbf {\Phi } _{\ell m},\\{\hat {\mathbf {B} }}&=B^{r}(r)\mathbf {Y} _{\ell m}+B^{(1)}(r)\mathbf {\Psi } _{\ell m}.\end{aligned}}} {\displaystyle {\begin{aligned}{\hat {\mathbf {E} }}&=E(r)\mathbf {\Phi } _{\ell m},\\{\hat {\mathbf {B} }}&=B^{r}(r)\mathbf {Y} _{\ell m}+B^{(1)}(r)\mathbf {\Psi } _{\ell m}.\end{aligned}}}

Substituting into Maxwell equations, Gauss's law is automatically satisfied

E ^ = 0 , {\displaystyle \nabla \cdot {\hat {\mathbf {E} }}=0,} {\displaystyle \nabla \cdot {\hat {\mathbf {E} }}=0,}

while Faraday's law decouples as

× E ^ = i ω B ^ { ( + 1 ) r E = i ω B r , d E d r + E r = i ω B ( 1 ) . {\displaystyle \nabla \times {\hat {\mathbf {E} }}=-i\omega {\hat {\mathbf {B} }}\quad \Rightarrow \quad {\begin{cases}{\dfrac {\ell (\ell +1)}{r}}E=i\omega B^{r},\\{\dfrac {dE}{dr}}+{\dfrac {E}{r}}=i\omega B^{(1)}.\end{cases}}} {\displaystyle \nabla \times {\hat {\mathbf {E} }}=-i\omega {\hat {\mathbf {B} }}\quad \Rightarrow \quad {\begin{cases}{\dfrac {\ell (\ell +1)}{r}}E=i\omega B^{r},\\{\dfrac {dE}{dr}}+{\dfrac {E}{r}}=i\omega B^{(1)}.\end{cases}}}

Gauss' law for the magnetic field implies

B ^ = 0 d B r d r + 2 r B r ( + 1 ) r B ( 1 ) = 0 , {\displaystyle \nabla \cdot {\hat {\mathbf {B} }}=0\quad \Rightarrow \quad {\frac {dB^{r}}{dr}}+{\frac {2}{r}}B^{r}-{\frac {\ell (\ell +1)}{r}}B^{(1)}=0,} {\displaystyle \nabla \cdot {\hat {\mathbf {B} }}=0\quad \Rightarrow \quad {\frac {dB^{r}}{dr}}+{\frac {2}{r}}B^{r}-{\frac {\ell (\ell +1)}{r}}B^{(1)}=0,}

and Ampère–Maxwell's equation gives

× B ^ = μ 0 J ^ + i μ 0 ε 0 ω E ^ B r r + d B ( 1 ) d r + B ( 1 ) r = μ 0 J + i ω μ 0 ε 0 E . {\displaystyle \nabla \times {\hat {\mathbf {B} }}=\mu _{0}{\hat {\mathbf {J} }}+i\mu _{0}\varepsilon _{0}\omega {\hat {\mathbf {E} }}\quad \Rightarrow \quad -{\frac {B^{r}}{r}}+{\frac {dB^{(1)}}{dr}}+{\frac {B^{(1)}}{r}}=\mu _{0}J+i\omega \mu _{0}\varepsilon _{0}E.} {\displaystyle \nabla \times {\hat {\mathbf {B} }}=\mu _{0}{\hat {\mathbf {J} }}+i\mu _{0}\varepsilon _{0}\omega {\hat {\mathbf {E} }}\quad \Rightarrow \quad -{\frac {B^{r}}{r}}+{\frac {dB^{(1)}}{dr}}+{\frac {B^{(1)}}{r}}=\mu _{0}J+i\omega \mu _{0}\varepsilon _{0}E.}

In this way, the partial differential equations have been transformed into a set of ordinary differential equations.

Alternative definition

[edit ]
Angular part of magnetic and electric vector spherical harmonics. Red and green arrows show the direction of the field. Generating scalar functions are also presented, only the first three orders are shown (dipoles, quadrupoles, octupoles).

In many applications, vector spherical harmonics are defined as fundamental set of the solutions of vector Helmholtz equation in spherical coordinates.[7] [8]

In this case, vector spherical harmonics are generated by scalar functions, which are solutions of scalar Helmholtz equation with the wavevector k {\displaystyle \mathbf {k} } {\displaystyle \mathbf {k} }. ψ e m n = cos m φ P n m ( cos ϑ ) z n ( k r ) ψ o m n = sin m φ P n m ( cos ϑ ) z n ( k r ) {\displaystyle {\begin{array}{l}{\psi _{emn}=\cos m\varphi P_{n}^{m}(\cos \vartheta )z_{n}({k}r)}\\{\psi _{omn}=\sin m\varphi P_{n}^{m}(\cos \vartheta )z_{n}({k}r)}\end{array}}} {\displaystyle {\begin{array}{l}{\psi _{emn}=\cos m\varphi P_{n}^{m}(\cos \vartheta )z_{n}({k}r)}\\{\psi _{omn}=\sin m\varphi P_{n}^{m}(\cos \vartheta )z_{n}({k}r)}\end{array}}} here P n m ( cos θ ) {\displaystyle P_{n}^{m}(\cos \theta )} {\displaystyle P_{n}^{m}(\cos \theta )} are the associated Legendre polynomials, and z n ( k r ) {\displaystyle z_{n}({k}r)} {\displaystyle z_{n}({k}r)} are any of the spherical Bessel functions.

Vector spherical harmonics are defined as:

longitudinal harmonics
L o e m n = ψ o e m n {\displaystyle \mathbf {L} _{^{e}_{o}mn}=\mathbf {\nabla } \psi _{^{e}_{o}mn}} {\displaystyle \mathbf {L} _{^{e}_{o}mn}=\mathbf {\nabla } \psi _{^{e}_{o}mn}}
magnetic harmonics
M o e m n = × ( r ψ o e m n ) {\displaystyle \mathbf {M} _{^{e}_{o}mn}=\nabla \times \left(\mathbf {r} \psi _{^{e}_{o}mn}\right)} {\displaystyle \mathbf {M} _{^{e}_{o}mn}=\nabla \times \left(\mathbf {r} \psi _{^{e}_{o}mn}\right)}
electric harmonics
N o e m n = × M o e m n k {\displaystyle \mathbf {N} _{^{e}_{o}mn}={\frac {\nabla \times \mathbf {M} _{^{e}_{o}mn}}{k}}} {\displaystyle \mathbf {N} _{^{e}_{o}mn}={\frac {\nabla \times \mathbf {M} _{^{e}_{o}mn}}{k}}}

Here we use harmonics real-valued angular part, where m 0 {\displaystyle m\geq 0} {\displaystyle m\geq 0}, but complex functions can be introduced in the same way.

Let us introduce the notation ρ = k r {\displaystyle \rho =kr} {\displaystyle \rho =kr}. In the component form vector spherical harmonics are written as: M e m n ( k , r ) = m sin ( θ ) sin ( m φ ) P n m ( cos ( θ ) ) z n ( ρ ) e θ cos ( m φ ) d P n m ( cos ( θ ) ) d θ z n ( ρ ) e φ {\displaystyle {\begin{aligned}{\mathbf {M} _{emn}(k,\mathbf {r} )=\qquad {{\frac {-m}{\sin(\theta )}}\sin(m\varphi )P_{n}^{m}(\cos(\theta ))}z_{n}(\rho )\mathbf {e} _{\theta }}\\{{}-\cos(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}}z_{n}(\rho )\mathbf {e} _{\varphi }\end{aligned}}} {\displaystyle {\begin{aligned}{\mathbf {M} _{emn}(k,\mathbf {r} )=\qquad {{\frac {-m}{\sin(\theta )}}\sin(m\varphi )P_{n}^{m}(\cos(\theta ))}z_{n}(\rho )\mathbf {e} _{\theta }}\\{{}-\cos(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}}z_{n}(\rho )\mathbf {e} _{\varphi }\end{aligned}}} M o m n ( k , r ) = m sin ( θ ) cos ( m φ ) P n m ( cos ( θ ) ) z n ( ρ ) e θ sin ( m φ ) d P n m ( cos ( θ ) ) d θ z n ( ρ ) e φ {\displaystyle {\begin{aligned}{\mathbf {M} _{omn}(k,\mathbf {r} )=\qquad {{\frac {m}{\sin(\theta )}}\cos(m\varphi )P_{n}^{m}(\cos(\theta ))}}z_{n}(\rho )\mathbf {e} _{\theta }\\{{}-\sin(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}z_{n}(\rho )\mathbf {e} _{\varphi }}\end{aligned}}} {\displaystyle {\begin{aligned}{\mathbf {M} _{omn}(k,\mathbf {r} )=\qquad {{\frac {m}{\sin(\theta )}}\cos(m\varphi )P_{n}^{m}(\cos(\theta ))}}z_{n}(\rho )\mathbf {e} _{\theta }\\{{}-\sin(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}z_{n}(\rho )\mathbf {e} _{\varphi }}\end{aligned}}}

N e m n ( k , r ) = z n ( ρ ) ρ cos ( m φ ) n ( n + 1 ) P n m ( cos ( θ ) ) e r + cos ( m φ ) d P n m ( cos ( θ ) ) d θ 1 ρ d d ρ [ ρ z n ( ρ ) ] e θ m sin ( m φ ) P n m ( cos ( θ ) ) sin ( θ ) 1 ρ d d ρ [ ρ z n ( ρ ) ] e φ {\displaystyle {\begin{aligned}{\mathbf {N} _{emn}(k,\mathbf {r} )=\qquad {\frac {z_{n}(\rho )}{\rho }}\cos(m\varphi )n(n+1)P_{n}^{m}(\cos(\theta ))\mathbf {e} _{\mathbf {r} }}\\{{}+\cos(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\theta }\\{{}-m\sin(m\varphi ){\frac {P_{n}^{m}(\cos(\theta ))}{\sin(\theta )}}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\varphi }\end{aligned}}} {\displaystyle {\begin{aligned}{\mathbf {N} _{emn}(k,\mathbf {r} )=\qquad {\frac {z_{n}(\rho )}{\rho }}\cos(m\varphi )n(n+1)P_{n}^{m}(\cos(\theta ))\mathbf {e} _{\mathbf {r} }}\\{{}+\cos(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\theta }\\{{}-m\sin(m\varphi ){\frac {P_{n}^{m}(\cos(\theta ))}{\sin(\theta )}}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\varphi }\end{aligned}}}

N o m n ( k , r ) = z n ( ρ ) ρ sin ( m φ ) n ( n + 1 ) P n m ( cos ( θ ) ) e r + sin ( m φ ) d P n m ( cos ( θ ) ) d θ 1 ρ d d ρ [ ρ z n ( ρ ) ] e θ + m cos ( m φ ) P n m ( cos ( θ ) ) sin ( θ ) 1 ρ d d ρ [ ρ z n ( ρ ) ] e φ {\displaystyle {\begin{aligned}\mathbf {N} _{omn}(k,\mathbf {r} )=\qquad {\frac {z_{n}(\rho )}{\rho }}\sin(m\varphi )n(n+1)P_{n}^{m}(\cos(\theta ))\mathbf {e} _{\mathbf {r} }\\{}+\sin(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\theta }\\{}+{m\cos(m\varphi ){\frac {P_{n}^{m}(\cos(\theta ))}{\sin(\theta )}}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\varphi }\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {N} _{omn}(k,\mathbf {r} )=\qquad {\frac {z_{n}(\rho )}{\rho }}\sin(m\varphi )n(n+1)P_{n}^{m}(\cos(\theta ))\mathbf {e} _{\mathbf {r} }\\{}+\sin(m\varphi ){\frac {dP_{n}^{m}(\cos(\theta ))}{d\theta }}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\theta }\\{}+{m\cos(m\varphi ){\frac {P_{n}^{m}(\cos(\theta ))}{\sin(\theta )}}}{\frac {1}{\rho }}{\frac {d}{d\rho }}\left[\rho z_{n}(\rho )\right]\mathbf {e} _{\varphi }\end{aligned}}} There is no radial part for magnetic harmonics. For electric harmonics, the radial part decreases faster than angular, and for big ρ {\displaystyle \rho } {\displaystyle \rho } can be neglected. We can also see that for electric and magnetic harmonics angular parts are the same up to permutation of the polar and azimuthal unit vectors, so for big ρ {\displaystyle \rho } {\displaystyle \rho } electric and magnetic harmonics vectors are equal in value and perpendicular to each other.

Longitudinal harmonics: L o e m n ( k , r ) = r z n ( k r ) P n m ( cos θ ) sin cos m φ e r + 1 r z n ( k r ) θ P n m ( cos θ ) sin cos m φ e θ m r sin θ z n ( k r ) P n m ( cos θ ) cos sin m φ e φ {\displaystyle {\begin{aligned}\mathbf {L} _{^{e}_{o}{mn}}(k,\mathbf {r} ){}=\qquad &{\frac {\partial }{\partial r}}z_{n}(kr)P_{n}^{m}(\cos \theta ){^{\cos }_{\sin }}{m\varphi }\mathbf {e} _{r}\\{}+{}&{\frac {1}{r}}z_{n}(kr){\frac {\partial }{\partial \theta }}P_{n}^{m}(\cos \theta ){^{\cos }_{\sin }}m\varphi \mathbf {e} _{\theta }\\{}\mp {}&{\frac {m}{r\sin \theta }}z_{n}(kr)P_{n}^{m}(\cos \theta ){^{\sin }_{\cos }}m\varphi \mathbf {e} _{\varphi }\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {L} _{^{e}_{o}{mn}}(k,\mathbf {r} ){}=\qquad &{\frac {\partial }{\partial r}}z_{n}(kr)P_{n}^{m}(\cos \theta ){^{\cos }_{\sin }}{m\varphi }\mathbf {e} _{r}\\{}+{}&{\frac {1}{r}}z_{n}(kr){\frac {\partial }{\partial \theta }}P_{n}^{m}(\cos \theta ){^{\cos }_{\sin }}m\varphi \mathbf {e} _{\theta }\\{}\mp {}&{\frac {m}{r\sin \theta }}z_{n}(kr)P_{n}^{m}(\cos \theta ){^{\sin }_{\cos }}m\varphi \mathbf {e} _{\varphi }\end{aligned}}}

Orthogonality

[edit ]

The solutions of the Helmholtz vector equation obey the following orthogonality relations:[8] 0 2 π 0 π L o e m n L o e m n sin ϑ d ϑ d φ = ( 1 + δ m , 0 ) 2 π ( 2 n + 1 ) 2 ( n + m ) ! ( n m ) ! k 2 { n [ z n 1 ( k r ) ] 2 + ( n + 1 ) [ z n + 1 ( k r ) ] 2 } 0 2 π 0 π M o e m n M o e m n sin ϑ d ϑ d φ = ( 1 + δ m , 0 ) 2 π 2 n + 1 ( n + m ) ! ( n m ) ! n ( n + 1 ) [ z n ( k r ) ] 2 0 2 π 0 π N o e m n N o e m n sin ϑ d ϑ d φ = ( 1 + δ m , 0 ) 2 π ( 2 n + 1 ) 2 ( n + m ) ! ( n m ) ! n ( n + 1 ) { ( n + 1 ) [ z n 1 ( k r ) ] 2 + n [ z n + 1 ( k r ) ] 2 } 0 π 0 2 π L o e m n N o e m n sin ϑ d ϑ d φ = ( 1 + δ m , 0 ) 2 π ( 2 n + 1 ) 2 ( n + m ) ! ( n m ) ! n ( n + 1 ) k { [ z n 1 ( k r ) ] 2 [ z n + 1 ( k r ) ] 2 } {\displaystyle {\begin{aligned}\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {L} _{^{e}_{o}mn}\cdot \mathbf {L} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}k^{2}\left\{n\left[z_{n-1}(kr)\right]^{2}+(n+1)\left[z_{n+1}(kr)\right]^{2}\right\}\\[3pt]\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {M} _{^{e}_{o}mn}\cdot \mathbf {M} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{2n+1}}{\frac {(n+m)!}{(n-m)!}}n(n+1)\left[z_{n}(kr)\right]^{2}\\[3pt]\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {N} _{^{e}_{o}mn}\cdot \mathbf {N} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}n(n+1)\left\{(n+1)\left[z_{n-1}(kr)\right]^{2}+n\left[z_{n+1}(kr)\right]^{2}\right\}\\[3pt]\int _{0}^{\pi }\int _{0}^{2\pi }\mathbf {L} _{^{e}_{o}mn}\cdot \mathbf {N} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}n(n+1)k\left\{\left[z_{n-1}(kr)\right]^{2}-\left[z_{n+1}(kr)\right]^{2}\right\}\end{aligned}}} {\displaystyle {\begin{aligned}\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {L} _{^{e}_{o}mn}\cdot \mathbf {L} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}k^{2}\left\{n\left[z_{n-1}(kr)\right]^{2}+(n+1)\left[z_{n+1}(kr)\right]^{2}\right\}\\[3pt]\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {M} _{^{e}_{o}mn}\cdot \mathbf {M} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{2n+1}}{\frac {(n+m)!}{(n-m)!}}n(n+1)\left[z_{n}(kr)\right]^{2}\\[3pt]\int _{0}^{2\pi }\int _{0}^{\pi }\mathbf {N} _{^{e}_{o}mn}\cdot \mathbf {N} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}n(n+1)\left\{(n+1)\left[z_{n-1}(kr)\right]^{2}+n\left[z_{n+1}(kr)\right]^{2}\right\}\\[3pt]\int _{0}^{\pi }\int _{0}^{2\pi }\mathbf {L} _{^{e}_{o}mn}\cdot \mathbf {N} _{^{e}_{o}mn}\sin \vartheta d\vartheta d\varphi &=(1+\delta _{m,0}){\frac {2\pi }{(2n+1)^{2}}}{\frac {(n+m)!}{(n-m)!}}n(n+1)k\left\{\left[z_{n-1}(kr)\right]^{2}-\left[z_{n+1}(kr)\right]^{2}\right\}\end{aligned}}}

All other integrals over the angles between different functions or functions with different indices are equal to zero.

Rotation and inversion

[edit ]
Illustration of the transformation of vector spherical harmonics under rotations. One can see that they are transformed in the same way as the corresponding scalar functions.

Under rotation, vector spherical harmonics are transformed through each other in the same way as the corresponding scalar spherical functions, which are generating for a specific type of vector harmonics. For example, if the generating functions are the usual spherical harmonics, then the vector harmonics will also be transformed through the Wigner D-matrices [9] [10] [11] D ^ ( α , β , γ ) Y J M ( s ) ( θ , φ ) = M = J J [ D M M ( J ) ( α , β , γ ) ] Y J M ( s ) ( θ , φ ) , {\displaystyle {\hat {D}}(\alpha ,\beta ,\gamma )\mathbf {Y} _{JM}^{(s)}(\theta ,\varphi )=\sum _{M'=-J}^{J}[D_{MM'}^{(J)}(\alpha ,\beta ,\gamma )]^{*}\mathbf {Y} _{JM'}^{(s)}(\theta ,\varphi ),} {\displaystyle {\hat {D}}(\alpha ,\beta ,\gamma )\mathbf {Y} _{JM}^{(s)}(\theta ,\varphi )=\sum _{M'=-J}^{J}[D_{MM'}^{(J)}(\alpha ,\beta ,\gamma )]^{*}\mathbf {Y} _{JM'}^{(s)}(\theta ,\varphi ),} The behavior under rotations is the same for electrical, magnetic and longitudinal harmonics.

Under inversion, electric and longitudinal spherical harmonics behave in the same way as scalar spherical functions, i.e. I ^ N J M ( θ , φ ) = ( 1 ) J N J M ( θ , φ ) , {\displaystyle {\hat {I}}\mathbf {N} _{JM}(\theta ,\varphi )=(-1)^{J}\mathbf {N} _{JM}(\theta ,\varphi ),} {\displaystyle {\hat {I}}\mathbf {N} _{JM}(\theta ,\varphi )=(-1)^{J}\mathbf {N} _{JM}(\theta ,\varphi ),} and magnetic ones have the opposite parity: I ^ M J M ( θ , φ ) = ( 1 ) J + 1 M J M ( θ , φ ) , {\displaystyle {\hat {I}}\mathbf {M} _{JM}(\theta ,\varphi )=(-1)^{J+1}\mathbf {M} _{JM}(\theta ,\varphi ),} {\displaystyle {\hat {I}}\mathbf {M} _{JM}(\theta ,\varphi )=(-1)^{J+1}\mathbf {M} _{JM}(\theta ,\varphi ),}

Fluid dynamics

[edit ]

In the calculation of the Stokes' law for the drag that a viscous fluid exerts on a small spherical particle, the velocity distribution obeys Navier–Stokes equations neglecting inertia, i.e.,

0 = v , 0 = p + η 2 v , {\displaystyle {\begin{aligned}0&=\nabla \cdot \mathbf {v} ,\\\mathbf {0} &=-\nabla p+\eta \nabla ^{2}\mathbf {v} ,\end{aligned}}} {\displaystyle {\begin{aligned}0&=\nabla \cdot \mathbf {v} ,\\\mathbf {0} &=-\nabla p+\eta \nabla ^{2}\mathbf {v} ,\end{aligned}}}

with the boundary conditions

v = { 0 r = a , U 0 r . {\displaystyle \mathbf {v} ={\begin{cases}\mathbf {0} &r=a,\\-\mathbf {U} _{0}&r\to \infty .\end{cases}}} {\displaystyle \mathbf {v} ={\begin{cases}\mathbf {0} &r=a,\\-\mathbf {U} _{0}&r\to \infty .\end{cases}}}

where U is the relative velocity of the particle to the fluid far from the particle. In spherical coordinates this velocity at infinity can be written as

U 0 = U 0 ( cos θ r ^ sin θ θ ^ ) = U 0 ( Y 10 + Ψ 10 ) . {\displaystyle \mathbf {U} _{0}=U_{0}\left(\cos \theta ,円{\hat {\mathbf {r} }}-\sin \theta ,円{\hat {\mathbf {\theta } }}\right)=U_{0}\left(\mathbf {Y} _{10}+\mathbf {\Psi } _{10}\right).} {\displaystyle \mathbf {U} _{0}=U_{0}\left(\cos \theta ,円{\hat {\mathbf {r} }}-\sin \theta ,円{\hat {\mathbf {\theta } }}\right)=U_{0}\left(\mathbf {Y} _{10}+\mathbf {\Psi } _{10}\right).}

The last expression suggests an expansion in spherical harmonics for the liquid velocity and the pressure

p = p ( r ) Y 10 , v = v r ( r ) Y 10 + v ( 1 ) ( r ) Ψ 10 . {\displaystyle {\begin{aligned}p&=p(r)Y_{10},\\\mathbf {v} &=v^{r}(r)\mathbf {Y} _{10}+v^{(1)}(r)\mathbf {\Psi } _{10}.\end{aligned}}} {\displaystyle {\begin{aligned}p&=p(r)Y_{10},\\\mathbf {v} &=v^{r}(r)\mathbf {Y} _{10}+v^{(1)}(r)\mathbf {\Psi } _{10}.\end{aligned}}}

Substitution in the Navier–Stokes equations produces a set of ordinary differential equations for the coefficients.

Integral relations

[edit ]

Here the following definitions are used:

Y e m n = cos m φ P n m ( cos θ ) Y o m n = sin m φ P n m ( cos θ ) {\displaystyle {\begin{aligned}Y_{emn}&=\cos m\varphi P_{n}^{m}(\cos \theta )\\Y_{omn}&=\sin m\varphi P_{n}^{m}(\cos \theta )\end{aligned}}} {\displaystyle {\begin{aligned}Y_{emn}&=\cos m\varphi P_{n}^{m}(\cos \theta )\\Y_{omn}&=\sin m\varphi P_{n}^{m}(\cos \theta )\end{aligned}}}

X o e m n ( k k ) = × ( k Y e o m n ( k k ) ) {\displaystyle \mathbf {X} _{^{e}_{o}mn}\left({\frac {\mathbf {k} }{k}}\right)=\nabla \times \left(\mathbf {k} Y_{^{o}_{e}mn}\left({\frac {\mathbf {k} }{k}}\right)\right)} {\displaystyle \mathbf {X} _{^{e}_{o}mn}\left({\frac {\mathbf {k} }{k}}\right)=\nabla \times \left(\mathbf {k} Y_{^{o}_{e}mn}\left({\frac {\mathbf {k} }{k}}\right)\right)}

Z e o m n ( k k ) = i k k × X o e m n ( k k ) {\displaystyle \mathbf {Z} _{^{o}_{e}mn}\left({\frac {\mathbf {k} }{k}}\right)=i{\frac {\mathbf {k} }{k}}\times \mathbf {X} _{^{e}_{o}mn}\left({\frac {\mathbf {k} }{k}}\right)} {\displaystyle \mathbf {Z} _{^{o}_{e}mn}\left({\frac {\mathbf {k} }{k}}\right)=i{\frac {\mathbf {k} }{k}}\times \mathbf {X} _{^{e}_{o}mn}\left({\frac {\mathbf {k} }{k}}\right)} In case, when instead of z n {\displaystyle z_{n}} {\displaystyle z_{n}} are spherical Bessel functions, with help of plane wave expansion one can obtain the following integral relations:[12]

N p m n ( 1 ) ( k , r ) = i n 4 π Z p m n ( k k ) e i k r d Ω k {\displaystyle \mathbf {N} _{pmn}^{(1)}(k,\mathbf {r} )={\frac {i^{-n}}{4\pi }}\int \mathbf {Z} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)e^{i\mathbf {k} \cdot \mathbf {r} }d\Omega _{k}} {\displaystyle \mathbf {N} _{pmn}^{(1)}(k,\mathbf {r} )={\frac {i^{-n}}{4\pi }}\int \mathbf {Z} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)e^{i\mathbf {k} \cdot \mathbf {r} }d\Omega _{k}}

M p m n ( 1 ) ( k , r ) = i n 4 π X p m n ( k k ) e i k r d Ω k {\displaystyle \mathbf {M} _{pmn}^{(1)}(k,\mathbf {r} )={\frac {i^{-n}}{4\pi }}\int \mathbf {X} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)e^{i\mathbf {k} \cdot \mathbf {r} }d\Omega _{k}} {\displaystyle \mathbf {M} _{pmn}^{(1)}(k,\mathbf {r} )={\frac {i^{-n}}{4\pi }}\int \mathbf {X} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)e^{i\mathbf {k} \cdot \mathbf {r} }d\Omega _{k}}

In case, when z n {\displaystyle z_{n}} {\displaystyle z_{n}} are spherical Hankel functions, one should use the different formulae.[13] [12] For vector spherical harmonics the following relations are obtained:

M p m n ( 3 ) ( k , r ) = i n 2 π k d k e i ( k x x + k y y ± k z z ) k z X p m n ( k k ) {\displaystyle \mathbf {M} _{pmn}^{(3)}(k,\mathbf {r} )={\frac {i^{-n}}{2\pi k}}\iint _{-\infty }^{\infty }dk_{\|}{\frac {e^{i\left(k_{x}x+k_{y}y\pm k_{z}z\right)}}{k_{z}}}\mathbf {X} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)} {\displaystyle \mathbf {M} _{pmn}^{(3)}(k,\mathbf {r} )={\frac {i^{-n}}{2\pi k}}\iint _{-\infty }^{\infty }dk_{\|}{\frac {e^{i\left(k_{x}x+k_{y}y\pm k_{z}z\right)}}{k_{z}}}\mathbf {X} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)}

N p m n ( 3 ) ( k , r ) = i n 2 π k d k e i ( k x x + k y y ± k z z ) k z Z p m n ( k k ) {\displaystyle \mathbf {N} _{pmn}^{(3)}(k,\mathbf {r} )={\frac {i^{-n}}{2\pi k}}\iint _{-\infty }^{\infty }dk_{\|}{\frac {e^{i\left(k_{x}x+k_{y}y\pm k_{z}z\right)}}{k_{z}}}\mathbf {Z} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)} {\displaystyle \mathbf {N} _{pmn}^{(3)}(k,\mathbf {r} )={\frac {i^{-n}}{2\pi k}}\iint _{-\infty }^{\infty }dk_{\|}{\frac {e^{i\left(k_{x}x+k_{y}y\pm k_{z}z\right)}}{k_{z}}}\mathbf {Z} _{pmn}\left({\frac {\mathbf {k} }{k}}\right)} where k z = k 2 k x 2 k y 2 {\textstyle k_{z}={\sqrt {k^{2}-k_{x}^{2}-k_{y}^{2}}}} {\textstyle k_{z}={\sqrt {k^{2}-k_{x}^{2}-k_{y}^{2}}}}, index ( 3 ) {\displaystyle (3)} {\displaystyle (3)} means, that spherical Hankel functions are used.

See also

[edit ]

References

[edit ]
  1. ^ Barrera, R G; Estevez, G A; Giraldo, J (1985年10月01日). "Vector spherical harmonics and their application to magnetostatics". European Journal of Physics. 6 (4). IOP Publishing: 287–294. Bibcode:1985EJPh....6..287B. CiteSeerX 10.1.1.718.2001 . doi:10.1088/0143-0807/6/4/014. ISSN 0143-0807. S2CID 250894245.
  2. ^ Carrascal, B; Estevez, G A; Lee, Peilian; Lorenzo, V (1991年07月01日). "Vector spherical harmonics and their application to classical electrodynamics". European Journal of Physics. 12 (4). IOP Publishing: 184–191. Bibcode:1991EJPh...12..184C. doi:10.1088/0143-0807/12/4/007. ISSN 0143-0807. S2CID 250886412.
  3. ^ Hill, E. L. (1954). "The Theory of Vector Spherical Harmonics" (PDF). American Journal of Physics. 22 (4). American Association of Physics Teachers (AAPT): 211–214. Bibcode:1954AmJPh..22..211H. doi:10.1119/1.1933682. ISSN 0002-9505. S2CID 124182424. Archived from the original (PDF) on 2020年04月12日.
  4. ^ Weinberg, Erick J. (1994年01月15日). "Monopole vector spherical harmonics". Physical Review D. 49 (2). American Physical Society (APS): 1086–1092. arXiv:hep-th/9308054 . Bibcode:1994PhRvD..49.1086W. doi:10.1103/physrevd.49.1086. ISSN 0556-2821. PMID 10017069. S2CID 6429605.
  5. ^ P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, New York: McGraw-Hill, 1898-1901 (1953)
  6. ^ Cohen-Tannoudji, Claude; Diu, Bernard; Laloë, Franck (2020). "Complement B-XIX: Angular momentum of radiation". Quantum mechanics. Vol. III (2nd ed.). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. p. 2053. ISBN 978-3-527-34553-3.
  7. ^ Bohren, Craig F. and Donald R. Huffman, Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition)
  8. ^ a b Stratton, J. A. (1941). Electromagnetic Theory . New York: McGraw-Hill.
  9. ^ D. A. Varhalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Nauka, Leningrad (1975)
  10. ^ Zhang, Huayong; Han, Yiping (2008). "Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients". J. Opt. Soc. Am. B. 25 (2): 255–260. Bibcode:2008JOSAB..25..255Z. doi:10.1364/JOSAB.25.000255.
  11. ^ Stein, Seymour (1961). "Addition theorems for spherical wave functions". Quarterly of Applied Mathematics. 19 (1): 15–24. doi:10.1090/qam/120407.
  12. ^ a b Stout, B. (2012). Popov, E (ed.). "Spherical harmonic lattice sums for gratings" (PDF). Institut Fresnel, Universite d'Aix-Marseille 6. Gratings: theory and numeric applications.
  13. ^ Wittmann, R. C. (1988). "Spherical wave operators and the translation formulas". IEEE Transactions on Antennas and Propagation. 36 (8): 1078–1087. Bibcode:1988ITAP...36.1078W. doi:10.1109/8.7220.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /