Jump to content
Wikipedia The Free Encyclopedia

Plane-wave expansion

From Wikipedia, the free encyclopedia
(Redirected from Plane wave expansion)
Expressing a plane wave as a combination of spherical waves

In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: e i k r = = 0 ( 2 + 1 ) i j ( k r ) P ( k ^ r ^ ) , {\displaystyle e^{i\mathbf {k} \cdot \mathbf {r} }=\sum _{\ell =0}^{\infty }(2\ell +1)i^{\ell }j_{\ell }(kr)P_{\ell }({\hat {\mathbf {k} }}\cdot {\hat {\mathbf {r} }}),} {\displaystyle e^{i\mathbf {k} \cdot \mathbf {r} }=\sum _{\ell =0}^{\infty }(2\ell +1)i^{\ell }j_{\ell }(kr)P_{\ell }({\hat {\mathbf {k} }}\cdot {\hat {\mathbf {r} }}),} where

In the special case where k is aligned with the z axis, e i k r cos θ = = 0 ( 2 + 1 ) i j ( k r ) P ( cos θ ) , {\displaystyle e^{ikr\cos \theta }=\sum _{\ell =0}^{\infty }(2\ell +1)i^{\ell }j_{\ell }(kr)P_{\ell }(\cos \theta ),} {\displaystyle e^{ikr\cos \theta }=\sum _{\ell =0}^{\infty }(2\ell +1)i^{\ell }j_{\ell }(kr)P_{\ell }(\cos \theta ),} where θ is the spherical polar angle of r.

Expansion in spherical harmonics

[edit ]

With the spherical-harmonic addition theorem the equation can be rewritten as e i k r = 4 π = 0 m = i j ( k r ) Y m ( k ^ ) Y m ( r ^ ) , {\displaystyle e^{i\mathbf {k} \cdot \mathbf {r} }=4\pi \sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }i^{\ell }j_{\ell }(kr)Y_{\ell }^{m}{}({\hat {\mathbf {k} }})Y_{\ell }^{m*}({\hat {\mathbf {r} }}),} {\displaystyle e^{i\mathbf {k} \cdot \mathbf {r} }=4\pi \sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }i^{\ell }j_{\ell }(kr)Y_{\ell }^{m}{}({\hat {\mathbf {k} }})Y_{\ell }^{m*}({\hat {\mathbf {r} }}),} where

Note that the complex conjugation can be interchanged between the two spherical harmonics due to symmetry.

Applications

[edit ]

The plane wave expansion is applied in

See also

[edit ]

References

[edit ]


Stub icon

This mathematical physics-related article is a stub. You can help Wikipedia by expanding it.

Stub icon

This scattering–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /