Jump to content
Wikipedia The Free Encyclopedia

Scattering amplitude

From Wikipedia, the free encyclopedia
Probability amplitude in quantum scattering theory

In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.[1] At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction [2]

ψ ( r ) = e i k z + f ( θ ) e i k r r , {\displaystyle \psi (\mathbf {r} )=e^{ikz}+f(\theta ){\frac {e^{ikr}}{r}}\;,} {\displaystyle \psi (\mathbf {r} )=e^{ikz}+f(\theta ){\frac {e^{ikr}}{r}}\;,}

where r ( x , y , z ) {\displaystyle \mathbf {r} \equiv (x,y,z)} {\displaystyle \mathbf {r} \equiv (x,y,z)} is the position vector; r | r | {\displaystyle r\equiv |\mathbf {r} |} {\displaystyle r\equiv |\mathbf {r} |}; e i k z {\displaystyle e^{ikz}} {\displaystyle e^{ikz}} is the incoming plane wave with the wavenumber k along the z axis; e i k r / r {\displaystyle e^{ikr}/r} {\displaystyle e^{ikr}/r} is the outgoing spherical wave; θ is the scattering angle (angle between the incident and scattered direction); and f ( θ ) {\displaystyle f(\theta )} {\displaystyle f(\theta )} is the scattering amplitude. The dimension of the scattering amplitude is length. The scattering amplitude is a probability amplitude; the differential cross-section as a function of scattering angle is given as its modulus squared,

d σ = | f ( θ ) | 2 d Ω . {\displaystyle d\sigma =|f(\theta )|^{2}\;d\Omega .} {\displaystyle d\sigma =|f(\theta )|^{2}\;d\Omega .}

The asymptotic form of the wave function in arbitrary external field takes the form[2]

ψ = e i k r n n + f ( n , n ) e i k r r {\displaystyle \psi =e^{ikr\mathbf {n} \cdot \mathbf {n} '}+f(\mathbf {n} ,\mathbf {n} '){\frac {e^{ikr}}{r}}} {\displaystyle \psi =e^{ikr\mathbf {n} \cdot \mathbf {n} '}+f(\mathbf {n} ,\mathbf {n} '){\frac {e^{ikr}}{r}}}

where n {\displaystyle \mathbf {n} } {\displaystyle \mathbf {n} } is the direction of incidient particles and n {\displaystyle \mathbf {n} '} {\displaystyle \mathbf {n} '} is the direction of scattered particles.

Unitary condition

[edit ]

When conservation of number of particles holds true during scattering, it leads to a unitary condition for the scattering amplitude. In the general case, we have[2]

f ( n , n ) f ( n , n ) = i k 2 π f ( n , n ) f ( n , n ) d Ω {\displaystyle f(\mathbf {n} ,\mathbf {n} ')-f^{*}(\mathbf {n} ',\mathbf {n} )={\frac {ik}{2\pi }}\int f(\mathbf {n} ,\mathbf {n} '')f^{*}(\mathbf {n} ,\mathbf {n} ''),円d\Omega ''} {\displaystyle f(\mathbf {n} ,\mathbf {n} ')-f^{*}(\mathbf {n} ',\mathbf {n} )={\frac {ik}{2\pi }}\int f(\mathbf {n} ,\mathbf {n} '')f^{*}(\mathbf {n} ,\mathbf {n} ''),円d\Omega ''}

Optical theorem follows from here by setting n = n . {\displaystyle \mathbf {n} =\mathbf {n} '.} {\displaystyle \mathbf {n} =\mathbf {n} '.}

In the centrally symmetric field, the unitary condition becomes

I m f ( θ ) = k 4 π f ( γ ) f ( γ ) d Ω {\displaystyle \mathrm {Im} f(\theta )={\frac {k}{4\pi }}\int f(\gamma )f(\gamma '),円d\Omega ''} {\displaystyle \mathrm {Im} f(\theta )={\frac {k}{4\pi }}\int f(\gamma )f(\gamma '),円d\Omega ''}

where γ {\displaystyle \gamma } {\displaystyle \gamma } and γ {\displaystyle \gamma '} {\displaystyle \gamma '} are the angles between n {\displaystyle \mathbf {n} } {\displaystyle \mathbf {n} } and n {\displaystyle \mathbf {n} '} {\displaystyle \mathbf {n} '} and some direction n {\displaystyle \mathbf {n} ''} {\displaystyle \mathbf {n} ''}. This condition puts a constraint on the allowed form for f ( θ ) {\displaystyle f(\theta )} {\displaystyle f(\theta )}, i.e., the real and imaginary part of the scattering amplitude are not independent in this case. For example, if | f ( θ ) | {\displaystyle |f(\theta )|} {\displaystyle |f(\theta )|} in f = | f | e 2 i α {\displaystyle f=|f|e^{2i\alpha }} {\displaystyle f=|f|e^{2i\alpha }} is known (say, from the measurement of the cross section), then α ( θ ) {\displaystyle \alpha (\theta )} {\displaystyle \alpha (\theta )} can be determined such that f ( θ ) {\displaystyle f(\theta )} {\displaystyle f(\theta )} is uniquely determined within the alternative f ( θ ) f ( θ ) {\displaystyle f(\theta )\rightarrow -f^{*}(\theta )} {\displaystyle f(\theta )\rightarrow -f^{*}(\theta )}.[2]

Partial wave expansion

[edit ]
Main article: Partial wave analysis

In the partial wave expansion the scattering amplitude is represented as a sum over the partial waves,[3]

f = = 0 ( 2 + 1 ) f P ( cos θ ) {\displaystyle f=\sum _{\ell =0}^{\infty }(2\ell +1)f_{\ell }P_{\ell }(\cos \theta )} {\displaystyle f=\sum _{\ell =0}^{\infty }(2\ell +1)f_{\ell }P_{\ell }(\cos \theta )},

where fl is the partial scattering amplitude and Pl are the Legendre polynomials. The partial amplitude can be expressed via the partial wave S-matrix element Sl ( = e 2 i δ {\displaystyle =e^{2i\delta _{\ell }}} {\displaystyle =e^{2i\delta _{\ell }}}) and the scattering phase shift δl as

f = S 1 2 i k = e 2 i δ 1 2 i k = e i δ sin δ k = 1 k cot δ i k . {\displaystyle f_{\ell }={\frac {S_{\ell }-1}{2ik}}={\frac {e^{2i\delta _{\ell }}-1}{2ik}}={\frac {e^{i\delta _{\ell }}\sin \delta _{\ell }}{k}}={\frac {1}{k\cot \delta _{\ell }-ik}}\;.} {\displaystyle f_{\ell }={\frac {S_{\ell }-1}{2ik}}={\frac {e^{2i\delta _{\ell }}-1}{2ik}}={\frac {e^{i\delta _{\ell }}\sin \delta _{\ell }}{k}}={\frac {1}{k\cot \delta _{\ell }-ik}}\;.}

Then the total cross section[4]

σ = | f ( θ ) | 2 d Ω {\displaystyle \sigma =\int |f(\theta )|^{2}d\Omega } {\displaystyle \sigma =\int |f(\theta )|^{2}d\Omega },

can be expanded as[2]

σ = l = 0 σ l , where σ l = 4 π ( 2 l + 1 ) | f l | 2 = 4 π k 2 ( 2 l + 1 ) sin 2 δ l {\displaystyle \sigma =\sum _{l=0}^{\infty }\sigma _{l},\quad {\text{where}}\quad \sigma _{l}=4\pi (2l+1)|f_{l}|^{2}={\frac {4\pi }{k^{2}}}(2l+1)\sin ^{2}\delta _{l}} {\displaystyle \sigma =\sum _{l=0}^{\infty }\sigma _{l},\quad {\text{where}}\quad \sigma _{l}=4\pi (2l+1)|f_{l}|^{2}={\frac {4\pi }{k^{2}}}(2l+1)\sin ^{2}\delta _{l}}

is the partial cross section. The total cross section is also equal to σ = ( 4 π / k ) I m f ( 0 ) {\displaystyle \sigma =(4\pi /k),円\mathrm {Im} f(0)} {\displaystyle \sigma =(4\pi /k),円\mathrm {Im} f(0)} due to optical theorem.

For θ 0 {\displaystyle \theta \neq 0} {\displaystyle \theta \neq 0}, we can write[2]

f = 1 2 i k = 0 ( 2 + 1 ) e 2 i δ l P ( cos θ ) . {\displaystyle f={\frac {1}{2ik}}\sum _{\ell =0}^{\infty }(2\ell +1)e^{2i\delta _{l}}P_{\ell }(\cos \theta ).} {\displaystyle f={\frac {1}{2ik}}\sum _{\ell =0}^{\infty }(2\ell +1)e^{2i\delta _{l}}P_{\ell }(\cos \theta ).}

X-rays

[edit ]

The scattering length for X-rays is the Thomson scattering length or classical electron radius, r0.

Neutrons

[edit ]

The nuclear neutron scattering process involves the coherent neutron scattering length, often described by b.

Quantum mechanical formalism

[edit ]

A quantum mechanical approach is given by the S matrix formalism.

Measurement

[edit ]

The scattering amplitude can be determined by the scattering length in the low-energy regime.

See also

[edit ]

References

[edit ]
  1. ^ Quantum Mechanics: Concepts and Applications Archived 2010年11月10日 at the Wayback Machine By Nouredine Zettili, 2nd edition, page 623. ISBN 978-0-470-02679-3 Paperback 688 pages January 2009
  2. ^ a b c d e f Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.
  3. ^ Michael Fowler/ 1/17/08 Plane Waves and Partial Waves
  4. ^ Schiff, Leonard I. (1968). Quantum Mechanics . New York: McGraw Hill. pp. 119–120.

AltStyle によって変換されたページ (->オリジナル) /