Positive element
In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form {\displaystyle a^{*}a}.[1]
Definition
[edit ]Let {\displaystyle {\mathcal {A}}} be a *-algebra. An element {\displaystyle a\in {\mathcal {A}}} is called positive if there are finitely many elements {\displaystyle a_{k}\in {\mathcal {A}}\;(k=1,2,\ldots ,n)}, so that {\textstyle a=\sum _{k=1}^{n}a_{k}^{*}a_{k}} holds.[1] This is also denoted by {\displaystyle a\geq 0}.[2]
The set of positive elements is denoted by {\displaystyle {\mathcal {A}}_{+}}.
A special case from particular importance is the case where {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ({\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}}), which is called a C*-algebra.
Examples
[edit ]- The unit element {\displaystyle e} of an unital *-algebra is positive.
- For each element {\displaystyle a\in {\mathcal {A}}}, the elements {\displaystyle a^{*}a} and {\displaystyle aa^{*}} are positive by definition.[1]
In case {\displaystyle {\mathcal {A}}} is a C*-algebra, the following holds:
- Let {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element, then for every positive function {\displaystyle f\geq 0} which is continuous on the spectrum of {\displaystyle a} the continuous functional calculus defines a positive element {\displaystyle f(a)}.[3]
- Every projection, i.e. every element {\displaystyle a\in {\mathcal {A}}} for which {\displaystyle a=a^{*}=a^{2}} holds, is positive. For the spectrum {\displaystyle \sigma (a)} of such an idempotent element, {\displaystyle \sigma (a)\subseteq \{0,1\}} holds, as can be seen from the continuous functional calculus.[3]
Criteria
[edit ]Let {\displaystyle {\mathcal {A}}} be a C*-algebra and {\displaystyle a\in {\mathcal {A}}}. Then the following are equivalent:[4]
- For the spectrum {\displaystyle \sigma (a)\subseteq [0,\infty )} holds and {\displaystyle a} is a normal element.
- There exists an element {\displaystyle b\in {\mathcal {A}}}, such that {\displaystyle a=bb^{*}}.
- There exists a (unique) self-adjoint element {\displaystyle c\in {\mathcal {A}}_{sa}} such that {\displaystyle a=c^{2}}.
If {\displaystyle {\mathcal {A}}} is a unital *-algebra with unit element {\displaystyle e}, then in addition the following statements are equivalent:[5]
- {\displaystyle \left\|te-a\right\|\leq t} for every {\displaystyle t\geq \left\|a\right\|} and {\displaystyle a} is a self-adjoint element.
- {\displaystyle \left\|te-a\right\|\leq t} for some {\displaystyle t\geq \left\|a\right\|} and {\displaystyle a} is a self-adjoint element.
Properties
[edit ]In *-algebras
[edit ]Let {\displaystyle {\mathcal {A}}} be a *-algebra. Then:
- If {\displaystyle a\in {\mathcal {A}}_{+}} is a positive element, then {\displaystyle a} is self-adjoint.[6]
- The set of positive elements {\displaystyle {\mathcal {A}}_{+}} is a convex cone in the real vector space of the self-adjoint elements {\displaystyle {\mathcal {A}}_{sa}}. This means that {\displaystyle \alpha a,a+b\in {\mathcal {A}}_{+}} holds for all {\displaystyle a,b\in {\mathcal {A}}} and {\displaystyle \alpha \in [0,\infty )}.[6]
- If {\displaystyle a\in {\mathcal {A}}_{+}} is a positive element, then {\displaystyle b^{*}ab} is also positive for every element {\displaystyle b\in {\mathcal {A}}}.[7]
- For the linear span of {\displaystyle {\mathcal {A}}_{+}} the following holds: {\displaystyle \langle {\mathcal {A}}_{+}\rangle ={\mathcal {A}}^{2}} and {\displaystyle {\mathcal {A}}_{+}-{\mathcal {A}}_{+}={\mathcal {A}}_{sa}\cap {\mathcal {A}}^{2}}.[8]
In C*-algebras
[edit ]Let {\displaystyle {\mathcal {A}}} be a C*-algebra. Then:
- Using the continuous functional calculus, for every {\displaystyle a\in {\mathcal {A}}_{+}} and {\displaystyle n\in \mathbb {N} } there is a uniquely determined {\displaystyle b\in {\mathcal {A}}_{+}} that satisfies {\displaystyle b^{n}=a}, i.e. a unique {\displaystyle n}-th root. In particular, a square root exists for every positive element. Since for every {\displaystyle b\in {\mathcal {A}}} the element {\displaystyle b^{*}b} is positive, this allows the definition of a unique absolute value: {\textstyle |b|=(b^{*}b)^{\frac {1}{2}}}.[9]
- For every real number {\displaystyle \alpha \geq 0} there is a positive element {\displaystyle a^{\alpha }\in {\mathcal {A}}_{+}} for which {\displaystyle a^{\alpha }a^{\beta }=a^{\alpha +\beta }} holds for all {\displaystyle \beta \in [0,\infty )}. The mapping {\displaystyle \alpha \mapsto a^{\alpha }} is continuous. Negative values for {\displaystyle \alpha } are also possible for invertible elements {\displaystyle a}.[7]
- Products of commutative positive elements are also positive. So if {\displaystyle ab=ba} holds for positive {\displaystyle a,b\in {\mathcal {A}}_{+}}, then {\displaystyle ab\in {\mathcal {A}}_{+}}.[5]
- Each element {\displaystyle a\in {\mathcal {A}}} can be uniquely represented as a linear combination of four positive elements. To do this, {\displaystyle a} is first decomposed into the self-adjoint real and imaginary parts and these are then decomposed into positive and negative parts using the continuous functional calculus.[10] For it holds that {\displaystyle {\mathcal {A}}_{sa}={\mathcal {A}}_{+}-{\mathcal {A}}_{+}}, since {\displaystyle {\mathcal {A}}^{2}={\mathcal {A}}}.[8]
- If both {\displaystyle a} and {\displaystyle -a} are positive {\displaystyle a=0} holds.[5]
- If {\displaystyle {\mathcal {B}}} is a C*-subalgebra of {\displaystyle {\mathcal {A}}}, then {\displaystyle {\mathcal {B}}_{+}={\mathcal {B}}\cap {\mathcal {A}}_{+}}.[5]
- If {\displaystyle {\mathcal {B}}} is another C*-algebra and {\displaystyle \Phi } is a *-homomorphism from {\displaystyle {\mathcal {A}}} to {\displaystyle {\mathcal {B}}}, then {\displaystyle \Phi ({\mathcal {A}}_{+})=\Phi ({\mathcal {A}})\cap {\mathcal {B}}_{+}} holds.[11]
- If {\displaystyle a,b\in {\mathcal {A}}_{+}} are positive elements for which {\displaystyle ab=0}, they commutate and {\displaystyle \left\|a+b\right\|=\max(\left\|a\right\|,\left\|b\right\|)} holds. Such elements are called orthogonal and one writes {\displaystyle a\bot b}.[12]
Partial order
[edit ]Let {\displaystyle {\mathcal {A}}} be a *-algebra. The property of being a positive element defines a translation invariant partial order on the set of self-adjoint elements {\displaystyle {\mathcal {A}}_{sa}}. If {\displaystyle b-a\in {\mathcal {A}}_{+}} holds for {\displaystyle a,b\in {\mathcal {A}}}, one writes {\displaystyle a\leq b} or {\displaystyle b\geq a}.[13]
This partial order fulfills the properties {\displaystyle ta\leq tb} and {\displaystyle a+c\leq b+c} for all {\displaystyle a,b,c\in {\mathcal {A}}_{sa}} with {\displaystyle a\leq b} and {\displaystyle t\in [0,\infty )}.[8]
If {\displaystyle {\mathcal {A}}} is a C*-algebra, the partial order also has the following properties for {\displaystyle a,b\in {\mathcal {A}}}:
- If {\displaystyle a\leq b} holds, then {\displaystyle c^{*}ac\leq c^{*}bc} is true for every {\displaystyle c\in {\mathcal {A}}}. For every {\displaystyle c\in {\mathcal {A}}_{+}} that commutates with {\displaystyle a} and {\displaystyle b} even {\displaystyle ac\leq bc} holds.[14]
- If {\displaystyle -b\leq a\leq b} holds, then {\displaystyle \left\|a\right\|\leq \left\|b\right\|}.[15]
- If {\displaystyle 0\leq a\leq b} holds, then {\textstyle a^{\alpha }\leq b^{\alpha }} holds for all real numbers {\displaystyle 0<\alpha \leq 1}.[16]
- If {\displaystyle a} is invertible and {\displaystyle 0\leq a\leq b} holds, then {\displaystyle b} is invertible and for the inverses {\displaystyle b^{-1}\leq a^{-1}} holds.[15]
See also
[edit ]Citations
[edit ]References
[edit ]- ^ a b c Palmer 2001, p. 798.
- ^ Blackadar 2006, p. 63.
- ^ a b Kadison & Ringrose 1983, p. 271.
- ^ Kadison & Ringrose 1983, pp. 247–248.
- ^ a b c d Kadison & Ringrose 1983, p. 245.
- ^ a b Palmer 2001, p. 800.
- ^ a b Blackadar 2006, p. 64.
- ^ a b c Palmer 2001, p. 802.
- ^ Blackadar 2006, pp. 63–65.
- ^ Kadison & Ringrose 1983, p. 247.
- ^ Dixmier 1977, p. 18.
- ^ Blackadar 2006, p. 67.
- ^ Palmer 2001, p. 799.
- ^ Kadison & Ringrose 1983, p. 249.
- ^ a b Kadison & Ringrose 1983, p. 250.
- ^ Blackadar 2006, p. 66.
Bibliography
[edit ]- Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9.
- Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
- Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
- Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0.