Jump to content
Wikipedia The Free Encyclopedia

Positive element

From Wikipedia, the free encyclopedia

In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form a a {\displaystyle a^{*}a} {\displaystyle a^{*}a}.[1]

Definition

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a *-algebra. An element a A {\displaystyle a\in {\mathcal {A}}} {\displaystyle a\in {\mathcal {A}}} is called positive if there are finitely many elements a k A ( k = 1 , 2 , , n ) {\displaystyle a_{k}\in {\mathcal {A}}\;(k=1,2,\ldots ,n)} {\displaystyle a_{k}\in {\mathcal {A}}\;(k=1,2,\ldots ,n)}, so that a = k = 1 n a k a k {\textstyle a=\sum _{k=1}^{n}a_{k}^{*}a_{k}} {\textstyle a=\sum _{k=1}^{n}a_{k}^{*}a_{k}} holds.[1] This is also denoted by a 0 {\displaystyle a\geq 0} {\displaystyle a\geq 0}.[2]

The set of positive elements is denoted by A + {\displaystyle {\mathcal {A}}_{+}} {\displaystyle {\mathcal {A}}_{+}}.

A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( a a = a 2   a A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}}), which is called a C*-algebra.

Examples

[edit ]
  • The unit element e {\displaystyle e} {\displaystyle e} of an unital *-algebra is positive.
  • For each element a A {\displaystyle a\in {\mathcal {A}}} {\displaystyle a\in {\mathcal {A}}}, the elements a a {\displaystyle a^{*}a} {\displaystyle a^{*}a} and a a {\displaystyle aa^{*}} {\displaystyle aa^{*}} are positive by definition.[1]

In case A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is a C*-algebra, the following holds:

  • Let a A N {\displaystyle a\in {\mathcal {A}}_{N}} {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element, then for every positive function f 0 {\displaystyle f\geq 0} {\displaystyle f\geq 0} which is continuous on the spectrum of a {\displaystyle a} {\displaystyle a} the continuous functional calculus defines a positive element f ( a ) {\displaystyle f(a)} {\displaystyle f(a)}.[3]
  • Every projection, i.e. every element a A {\displaystyle a\in {\mathcal {A}}} {\displaystyle a\in {\mathcal {A}}} for which a = a = a 2 {\displaystyle a=a^{*}=a^{2}} {\displaystyle a=a^{*}=a^{2}} holds, is positive. For the spectrum σ ( a ) {\displaystyle \sigma (a)} {\displaystyle \sigma (a)} of such an idempotent element, σ ( a ) { 0 , 1 } {\displaystyle \sigma (a)\subseteq \{0,1\}} {\displaystyle \sigma (a)\subseteq \{0,1\}} holds, as can be seen from the continuous functional calculus.[3]

Criteria

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a C*-algebra and a A {\displaystyle a\in {\mathcal {A}}} {\displaystyle a\in {\mathcal {A}}}. Then the following are equivalent:[4]

  • For the spectrum σ ( a ) [ 0 , ) {\displaystyle \sigma (a)\subseteq [0,\infty )} {\displaystyle \sigma (a)\subseteq [0,\infty )} holds and a {\displaystyle a} {\displaystyle a} is a normal element.
  • There exists an element b A {\displaystyle b\in {\mathcal {A}}} {\displaystyle b\in {\mathcal {A}}}, such that a = b b {\displaystyle a=bb^{*}} {\displaystyle a=bb^{*}}.
  • There exists a (unique) self-adjoint element c A s a {\displaystyle c\in {\mathcal {A}}_{sa}} {\displaystyle c\in {\mathcal {A}}_{sa}} such that a = c 2 {\displaystyle a=c^{2}} {\displaystyle a=c^{2}}.

If A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is a unital *-algebra with unit element e {\displaystyle e} {\displaystyle e}, then in addition the following statements are equivalent:[5]

  • t e a t {\displaystyle \left\|te-a\right\|\leq t} {\displaystyle \left\|te-a\right\|\leq t} for every t a {\displaystyle t\geq \left\|a\right\|} {\displaystyle t\geq \left\|a\right\|} and a {\displaystyle a} {\displaystyle a} is a self-adjoint element.
  • t e a t {\displaystyle \left\|te-a\right\|\leq t} {\displaystyle \left\|te-a\right\|\leq t} for some t a {\displaystyle t\geq \left\|a\right\|} {\displaystyle t\geq \left\|a\right\|} and a {\displaystyle a} {\displaystyle a} is a self-adjoint element.

Properties

[edit ]

In *-algebras

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a *-algebra. Then:

  • If a A + {\displaystyle a\in {\mathcal {A}}_{+}} {\displaystyle a\in {\mathcal {A}}_{+}} is a positive element, then a {\displaystyle a} {\displaystyle a} is self-adjoint.[6]
  • The set of positive elements A + {\displaystyle {\mathcal {A}}_{+}} {\displaystyle {\mathcal {A}}_{+}} is a convex cone in the real vector space of the self-adjoint elements A s a {\displaystyle {\mathcal {A}}_{sa}} {\displaystyle {\mathcal {A}}_{sa}}. This means that α a , a + b A + {\displaystyle \alpha a,a+b\in {\mathcal {A}}_{+}} {\displaystyle \alpha a,a+b\in {\mathcal {A}}_{+}} holds for all a , b A {\displaystyle a,b\in {\mathcal {A}}} {\displaystyle a,b\in {\mathcal {A}}} and α [ 0 , ) {\displaystyle \alpha \in [0,\infty )} {\displaystyle \alpha \in [0,\infty )}.[6]
  • If a A + {\displaystyle a\in {\mathcal {A}}_{+}} {\displaystyle a\in {\mathcal {A}}_{+}} is a positive element, then b a b {\displaystyle b^{*}ab} {\displaystyle b^{*}ab} is also positive for every element b A {\displaystyle b\in {\mathcal {A}}} {\displaystyle b\in {\mathcal {A}}}.[7]
  • For the linear span of A + {\displaystyle {\mathcal {A}}_{+}} {\displaystyle {\mathcal {A}}_{+}} the following holds: A + = A 2 {\displaystyle \langle {\mathcal {A}}_{+}\rangle ={\mathcal {A}}^{2}} {\displaystyle \langle {\mathcal {A}}_{+}\rangle ={\mathcal {A}}^{2}} and A + A + = A s a A 2 {\displaystyle {\mathcal {A}}_{+}-{\mathcal {A}}_{+}={\mathcal {A}}_{sa}\cap {\mathcal {A}}^{2}} {\displaystyle {\mathcal {A}}_{+}-{\mathcal {A}}_{+}={\mathcal {A}}_{sa}\cap {\mathcal {A}}^{2}}.[8]

In C*-algebras

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a C*-algebra. Then:

  • Using the continuous functional calculus, for every a A + {\displaystyle a\in {\mathcal {A}}_{+}} {\displaystyle a\in {\mathcal {A}}_{+}} and n N {\displaystyle n\in \mathbb {N} } {\displaystyle n\in \mathbb {N} } there is a uniquely determined b A + {\displaystyle b\in {\mathcal {A}}_{+}} {\displaystyle b\in {\mathcal {A}}_{+}} that satisfies b n = a {\displaystyle b^{n}=a} {\displaystyle b^{n}=a}, i.e. a unique n {\displaystyle n} {\displaystyle n}-th root. In particular, a square root exists for every positive element. Since for every b A {\displaystyle b\in {\mathcal {A}}} {\displaystyle b\in {\mathcal {A}}} the element b b {\displaystyle b^{*}b} {\displaystyle b^{*}b} is positive, this allows the definition of a unique absolute value: | b | = ( b b ) 1 2 {\textstyle |b|=(b^{*}b)^{\frac {1}{2}}} {\textstyle |b|=(b^{*}b)^{\frac {1}{2}}}.[9]
  • For every real number α 0 {\displaystyle \alpha \geq 0} {\displaystyle \alpha \geq 0} there is a positive element a α A + {\displaystyle a^{\alpha }\in {\mathcal {A}}_{+}} {\displaystyle a^{\alpha }\in {\mathcal {A}}_{+}} for which a α a β = a α + β {\displaystyle a^{\alpha }a^{\beta }=a^{\alpha +\beta }} {\displaystyle a^{\alpha }a^{\beta }=a^{\alpha +\beta }} holds for all β [ 0 , ) {\displaystyle \beta \in [0,\infty )} {\displaystyle \beta \in [0,\infty )}. The mapping α a α {\displaystyle \alpha \mapsto a^{\alpha }} {\displaystyle \alpha \mapsto a^{\alpha }} is continuous. Negative values for α {\displaystyle \alpha } {\displaystyle \alpha } are also possible for invertible elements a {\displaystyle a} {\displaystyle a}.[7]
  • Products of commutative positive elements are also positive. So if a b = b a {\displaystyle ab=ba} {\displaystyle ab=ba} holds for positive a , b A + {\displaystyle a,b\in {\mathcal {A}}_{+}} {\displaystyle a,b\in {\mathcal {A}}_{+}}, then a b A + {\displaystyle ab\in {\mathcal {A}}_{+}} {\displaystyle ab\in {\mathcal {A}}_{+}}.[5]
  • Each element a A {\displaystyle a\in {\mathcal {A}}} {\displaystyle a\in {\mathcal {A}}} can be uniquely represented as a linear combination of four positive elements. To do this, a {\displaystyle a} {\displaystyle a} is first decomposed into the self-adjoint real and imaginary parts and these are then decomposed into positive and negative parts using the continuous functional calculus.[10] For it holds that A s a = A + A + {\displaystyle {\mathcal {A}}_{sa}={\mathcal {A}}_{+}-{\mathcal {A}}_{+}} {\displaystyle {\mathcal {A}}_{sa}={\mathcal {A}}_{+}-{\mathcal {A}}_{+}}, since A 2 = A {\displaystyle {\mathcal {A}}^{2}={\mathcal {A}}} {\displaystyle {\mathcal {A}}^{2}={\mathcal {A}}}.[8]
  • If both a {\displaystyle a} {\displaystyle a} and a {\displaystyle -a} {\displaystyle -a} are positive a = 0 {\displaystyle a=0} {\displaystyle a=0} holds.[5]
  • If B {\displaystyle {\mathcal {B}}} {\displaystyle {\mathcal {B}}} is a C*-subalgebra of A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}}, then B + = B A + {\displaystyle {\mathcal {B}}_{+}={\mathcal {B}}\cap {\mathcal {A}}_{+}} {\displaystyle {\mathcal {B}}_{+}={\mathcal {B}}\cap {\mathcal {A}}_{+}}.[5]
  • If B {\displaystyle {\mathcal {B}}} {\displaystyle {\mathcal {B}}} is another C*-algebra and Φ {\displaystyle \Phi } {\displaystyle \Phi } is a *-homomorphism from A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} to B {\displaystyle {\mathcal {B}}} {\displaystyle {\mathcal {B}}}, then Φ ( A + ) = Φ ( A ) B + {\displaystyle \Phi ({\mathcal {A}}_{+})=\Phi ({\mathcal {A}})\cap {\mathcal {B}}_{+}} {\displaystyle \Phi ({\mathcal {A}}_{+})=\Phi ({\mathcal {A}})\cap {\mathcal {B}}_{+}} holds.[11]
  • If a , b A + {\displaystyle a,b\in {\mathcal {A}}_{+}} {\displaystyle a,b\in {\mathcal {A}}_{+}} are positive elements for which a b = 0 {\displaystyle ab=0} {\displaystyle ab=0}, they commutate and a + b = max ( a , b ) {\displaystyle \left\|a+b\right\|=\max(\left\|a\right\|,\left\|b\right\|)} {\displaystyle \left\|a+b\right\|=\max(\left\|a\right\|,\left\|b\right\|)} holds. Such elements are called orthogonal and one writes a b {\displaystyle a\bot b} {\displaystyle a\bot b}.[12]

Partial order

[edit ]

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a *-algebra. The property of being a positive element defines a translation invariant partial order on the set of self-adjoint elements A s a {\displaystyle {\mathcal {A}}_{sa}} {\displaystyle {\mathcal {A}}_{sa}}. If b a A + {\displaystyle b-a\in {\mathcal {A}}_{+}} {\displaystyle b-a\in {\mathcal {A}}_{+}} holds for a , b A {\displaystyle a,b\in {\mathcal {A}}} {\displaystyle a,b\in {\mathcal {A}}}, one writes a b {\displaystyle a\leq b} {\displaystyle a\leq b} or b a {\displaystyle b\geq a} {\displaystyle b\geq a}.[13]

This partial order fulfills the properties t a t b {\displaystyle ta\leq tb} {\displaystyle ta\leq tb} and a + c b + c {\displaystyle a+c\leq b+c} {\displaystyle a+c\leq b+c} for all a , b , c A s a {\displaystyle a,b,c\in {\mathcal {A}}_{sa}} {\displaystyle a,b,c\in {\mathcal {A}}_{sa}} with a b {\displaystyle a\leq b} {\displaystyle a\leq b} and t [ 0 , ) {\displaystyle t\in [0,\infty )} {\displaystyle t\in [0,\infty )}.[8]

If A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is a C*-algebra, the partial order also has the following properties for a , b A {\displaystyle a,b\in {\mathcal {A}}} {\displaystyle a,b\in {\mathcal {A}}}:

  • If a b {\displaystyle a\leq b} {\displaystyle a\leq b} holds, then c a c c b c {\displaystyle c^{*}ac\leq c^{*}bc} {\displaystyle c^{*}ac\leq c^{*}bc} is true for every c A {\displaystyle c\in {\mathcal {A}}} {\displaystyle c\in {\mathcal {A}}}. For every c A + {\displaystyle c\in {\mathcal {A}}_{+}} {\displaystyle c\in {\mathcal {A}}_{+}} that commutates with a {\displaystyle a} {\displaystyle a} and b {\displaystyle b} {\displaystyle b} even a c b c {\displaystyle ac\leq bc} {\displaystyle ac\leq bc} holds.[14]
  • If b a b {\displaystyle -b\leq a\leq b} {\displaystyle -b\leq a\leq b} holds, then a b {\displaystyle \left\|a\right\|\leq \left\|b\right\|} {\displaystyle \left\|a\right\|\leq \left\|b\right\|}.[15]
  • If 0 a b {\displaystyle 0\leq a\leq b} {\displaystyle 0\leq a\leq b} holds, then a α b α {\textstyle a^{\alpha }\leq b^{\alpha }} {\textstyle a^{\alpha }\leq b^{\alpha }} holds for all real numbers 0 < α 1 {\displaystyle 0<\alpha \leq 1} {\displaystyle 0<\alpha \leq 1}.[16]
  • If a {\displaystyle a} {\displaystyle a} is invertible and 0 a b {\displaystyle 0\leq a\leq b} {\displaystyle 0\leq a\leq b} holds, then b {\displaystyle b} {\displaystyle b} is invertible and for the inverses b 1 a 1 {\displaystyle b^{-1}\leq a^{-1}} {\displaystyle b^{-1}\leq a^{-1}} holds.[15]

See also

[edit ]

Citations

[edit ]

References

[edit ]
  1. ^ a b c Palmer 2001, p. 798.
  2. ^ Blackadar 2006, p. 63.
  3. ^ a b Kadison & Ringrose 1983, p. 271.
  4. ^ Kadison & Ringrose 1983, pp. 247–248.
  5. ^ a b c d Kadison & Ringrose 1983, p. 245.
  6. ^ a b Palmer 2001, p. 800.
  7. ^ a b Blackadar 2006, p. 64.
  8. ^ a b c Palmer 2001, p. 802.
  9. ^ Blackadar 2006, pp. 63–65.
  10. ^ Kadison & Ringrose 1983, p. 247.
  11. ^ Dixmier 1977, p. 18.
  12. ^ Blackadar 2006, p. 67.
  13. ^ Palmer 2001, p. 799.
  14. ^ Kadison & Ringrose 1983, p. 249.
  15. ^ a b Kadison & Ringrose 1983, p. 250.
  16. ^ Blackadar 2006, p. 66.

Bibliography

[edit ]
  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
  • Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0.
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications

AltStyle によって変換されたページ (->オリジナル) /