Polynomial hyperelastic model
Appearance
From Wikipedia, the free encyclopedia
Part of a series on | ||||
Continuum mechanics | ||||
---|---|---|---|---|
{\displaystyle J=-D{\frac {d\varphi }{dx}}} | ||||
Laws
|
||||
The polynomial hyperelastic material model [1] is a phenomenological model of rubber elasticity. In this model, the strain energy density function is of the form of a polynomial in the two invariants {\displaystyle I_{1},I_{2}} of the left Cauchy-Green deformation tensor.
The strain energy density function for the polynomial model is [1]
- {\displaystyle W=\sum _{i,j=0}^{n}C_{ij}(I_{1}-3)^{i}(I_{2}-3)^{j}}
where {\displaystyle C_{ij}} are material constants and {\displaystyle C_{00}=0}.
For compressible materials, a dependence of volume is added
- {\displaystyle W=\sum _{i,j=0}^{n}C_{ij}({\bar {I}}_{1}-3)^{i}({\bar {I}}_{2}-3)^{j}+\sum _{k=1}^{m}{\frac {1}{D_{k}}}(J-1)^{2k}}
where
- {\displaystyle {\begin{aligned}{\bar {I}}_{1}&=J^{-2/3}~I_{1}~;~~I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}~;~~J=\det({\boldsymbol {F}})\\{\bar {I}}_{2}&=J^{-4/3}~I_{2}~;~~I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}}
In the limit where {\displaystyle C_{01}=C_{11}=0}, the polynomial model reduces to the Neo-Hookean solid model. For a compressible Mooney-Rivlin material {\displaystyle n=1,C_{01}=C_{2},C_{11}=0,C_{10}=C_{1},m=1} and we have
- {\displaystyle W=C_{01}~({\bar {I}}_{2}-3)+C_{10}~({\bar {I}}_{1}-3)+{\frac {1}{D_{1}}}~(J-1)^{2}}