Jump to content
Wikipedia The Free Encyclopedia

Strain energy density function

From Wikipedia, the free encyclopedia
Mathematical function for thermoelastic strain energy density
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article cites its sources but does not provide page references . Please help improve it by providing page numbers for existing citations. (September 2025) (Learn how and when to remove this message)
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Strain energy density function" – news · newspapers · books · scholar · JSTOR
(September 2025) (Learn how and when to remove this message)
This article contains formulas that need descriptions. Please help clarify variables, symbols, and constants. (September 2025) (Learn how and when to remove this message)
(Learn how and when to remove this message)

A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient.

W = W ^ ( C ) = W ^ ( F T F ) = W ¯ ( F ) = W ¯ ( B 1 / 2 R ) = W ~ ( B , R ) {\displaystyle W={\hat {W}}({\boldsymbol {C}})={\hat {W}}({\boldsymbol {F}}^{T}\cdot {\boldsymbol {F}})={\bar {W}}({\boldsymbol {F}})={\bar {W}}({\boldsymbol {B}}^{1/2}\cdot {\boldsymbol {R}})={\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})} {\displaystyle W={\hat {W}}({\boldsymbol {C}})={\hat {W}}({\boldsymbol {F}}^{T}\cdot {\boldsymbol {F}})={\bar {W}}({\boldsymbol {F}})={\bar {W}}({\boldsymbol {B}}^{1/2}\cdot {\boldsymbol {R}})={\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})}

Equivalently,

W = W ^ ( C ) = W ^ ( R T B R ) = W ~ ( B , R ) {\displaystyle W={\hat {W}}({\boldsymbol {C}})={\hat {W}}({\boldsymbol {R}}^{T}\cdot {\boldsymbol {B}}\cdot {\boldsymbol {R}})={\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})} {\displaystyle W={\hat {W}}({\boldsymbol {C}})={\hat {W}}({\boldsymbol {R}}^{T}\cdot {\boldsymbol {B}}\cdot {\boldsymbol {R}})={\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})}

where F {\displaystyle {\boldsymbol {F}}} {\displaystyle {\boldsymbol {F}}} is the (two-point) deformation gradient tensor, C {\displaystyle {\boldsymbol {C}}} {\displaystyle {\boldsymbol {C}}} is the right Cauchy–Green deformation tensor, B {\displaystyle {\boldsymbol {B}}} {\displaystyle {\boldsymbol {B}}} is the left Cauchy–Green deformation tensor,[1] [2] and R {\displaystyle {\boldsymbol {R}}} {\displaystyle {\boldsymbol {R}}} is the rotation tensor from the polar decomposition of F {\displaystyle {\boldsymbol {F}}} {\displaystyle {\boldsymbol {F}}}.

For an anisotropic material, the strain energy density function W ^ ( C ) {\displaystyle {\hat {W}}({\boldsymbol {C}})} {\displaystyle {\hat {W}}({\boldsymbol {C}})} depends implicitly on reference vectors or tensors (such as the initial orientation of fibers in a composite) that characterize internal material texture. The spatial representation, W ~ ( B , R ) {\displaystyle {\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})} {\displaystyle {\tilde {W}}({\boldsymbol {B}},{\boldsymbol {R}})} must further depend explicitly on the polar rotation tensor R {\displaystyle {\boldsymbol {R}}} {\displaystyle {\boldsymbol {R}}} to provide sufficient information to convect the reference texture vectors or tensors into the spatial configuration.

For an isotropic material, consideration of the principle of material frame indifference leads to the conclusion that the strain energy density function depends only on the invariants of C {\displaystyle {\boldsymbol {C}}} {\displaystyle {\boldsymbol {C}}} (or, equivalently, the invariants of B {\displaystyle {\boldsymbol {B}}} {\displaystyle {\boldsymbol {B}}} since both have the same eigenvalues). In other words, the strain energy density function can be expressed uniquely in terms of the principal stretches or in terms of the invariants of the left Cauchy–Green deformation tensor or right Cauchy–Green deformation tensor and we have:

For isotropic materials,

W = W ^ ( λ 1 , λ 2 , λ 3 ) = W ~ ( I 1 , I 2 , I 3 ) = W ¯ ( I ¯ 1 , I ¯ 2 , J ) = U ( I 1 c , I 2 c , I 3 c ) {\displaystyle W={\hat {W}}(\lambda _{1},\lambda _{2},\lambda _{3})={\tilde {W}}(I_{1},I_{2},I_{3})={\bar {W}}({\bar {I}}_{1},{\bar {I}}_{2},J)=U(I_{1}^{c},I_{2}^{c},I_{3}^{c})} {\displaystyle W={\hat {W}}(\lambda _{1},\lambda _{2},\lambda _{3})={\tilde {W}}(I_{1},I_{2},I_{3})={\bar {W}}({\bar {I}}_{1},{\bar {I}}_{2},J)=U(I_{1}^{c},I_{2}^{c},I_{3}^{c})}

with

I ¯ 1 = J 2 / 3   I 1   ;     I 1 = λ 1 2 + λ 2 2 + λ 3 2   ;     J = det ( F ) I ¯ 2 = J 4 / 3   I 2   ;     I 2 = λ 1 2 λ 2 2 + λ 2 2 λ 3 2 + λ 3 2 λ 1 2 {\displaystyle {\begin{aligned}{\bar {I}}_{1}&=J^{-2/3}~I_{1}~;~~I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}~;~~J=\det({\boldsymbol {F}})\\{\bar {I}}_{2}&=J^{-4/3}~I_{2}~;~~I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}} {\displaystyle {\begin{aligned}{\bar {I}}_{1}&=J^{-2/3}~I_{1}~;~~I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}~;~~J=\det({\boldsymbol {F}})\\{\bar {I}}_{2}&=J^{-4/3}~I_{2}~;~~I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}}

For linear isotropic materials undergoing small strains, the strain energy density function specializes to

W = 1 2 i = 1 3 j = 1 3 σ i j ϵ i j = 1 2 ( σ x ϵ x + σ y ϵ y + σ z ϵ z + 2 σ x y ϵ x y + 2 σ y z ϵ y z + 2 σ x z ϵ x z ) {\displaystyle W={\frac {1}{2}}\sum _{i=1}^{3}\sum _{j=1}^{3}\sigma _{ij}\epsilon _{ij}={\frac {1}{2}}(\sigma _{x}\epsilon _{x}+\sigma _{y}\epsilon _{y}+\sigma _{z}\epsilon _{z}+2\sigma _{xy}\epsilon _{xy}+2\sigma _{yz}\epsilon _{yz}+2\sigma _{xz}\epsilon _{xz})} {\displaystyle W={\frac {1}{2}}\sum _{i=1}^{3}\sum _{j=1}^{3}\sigma _{ij}\epsilon _{ij}={\frac {1}{2}}(\sigma _{x}\epsilon _{x}+\sigma _{y}\epsilon _{y}+\sigma _{z}\epsilon _{z}+2\sigma _{xy}\epsilon _{xy}+2\sigma _{yz}\epsilon _{yz}+2\sigma _{xz}\epsilon _{xz})}[3]

A strain energy density function is used to define a hyperelastic material by postulating that the stress in the material can be obtained by taking the derivative of W {\displaystyle W} {\displaystyle W} with respect to the strain. For an isotropic hyperelastic material, the function relates the energy stored in an elastic material, and thus the stress–strain relationship, only to the three strain (elongation) components, thus disregarding the deformation history, heat dissipation, stress relaxation etc.

For isothermal elastic processes, the strain energy density function relates to the specific Helmholtz free energy function ψ {\displaystyle \psi } {\displaystyle \psi },[4]

W = ρ 0 ψ . {\displaystyle W=\rho _{0}\psi \;.} {\displaystyle W=\rho _{0}\psi \;.}

For isentropic elastic processes, the strain energy density function relates to the internal energy function u {\displaystyle u} {\displaystyle u},

W = ρ 0 u . {\displaystyle W=\rho _{0}u\;.} {\displaystyle W=\rho _{0}u\;.}

Examples

[edit ]

Some examples of hyperelastic constitutive equations are:[5]

See also

[edit ]
Wikiversity has learning resources about Continuum mechanics/Thermoelasticity

References

[edit ]
  1. ^ Bower, Allan (2009). Applied Mechanics of Solids. CRC Press. ISBN 978-1-4398-0247-2 . Retrieved 23 January 2010.
  2. ^ Ogden, R. W. (1998). Nonlinear Elastic Deformations. Dover. ISBN 978-0-486-69648-5.
  3. ^ Sadd, Martin H. (2009). Elasticity Theory, Applications and Numerics. Elsevier. ISBN 978-0-12-374446-3.
  4. ^ Wriggers, P. (2008). Nonlinear Finite Element Methods. Springer-Verlag. ISBN 978-3-540-71000-4.
  5. ^ Muhr, A. H. (2005). Modeling the stress–strain behavior of rubber. Rubber chemistry and technology, 78(3), 391–425. [1]

AltStyle によって変換されたページ (->オリジナル) /