Jump to content
Wikipedia The Free Encyclopedia

Partially ordered space

From Wikipedia, the free encyclopedia
Partially ordered topological space

In mathematics, a partially ordered space[1] (or pospace) is a topological space X {\displaystyle X} {\displaystyle X} equipped with a closed partial order {\displaystyle \leq } {\displaystyle \leq }, i.e. a partial order whose graph { ( x , y ) X 2 x y } {\displaystyle \{(x,y)\in X^{2}\mid x\leq y\}} {\displaystyle \{(x,y)\in X^{2}\mid x\leq y\}} is a closed subset of X 2 {\displaystyle X^{2}} {\displaystyle X^{2}}.

From pospaces, one can define dimaps, i.e. continuous maps between pospaces which preserve the order relation.

Equivalences

[edit ]

For a topological space X {\displaystyle X} {\displaystyle X} equipped with a partial order {\displaystyle \leq } {\displaystyle \leq }, the following are equivalent:

  • X {\displaystyle X} {\displaystyle X} is a partially ordered space.
  • For all x , y X {\displaystyle x,y\in X} {\displaystyle x,y\in X} with x y {\displaystyle x\not \leq y} {\displaystyle x\not \leq y}, there are open sets U , V X {\displaystyle U,V\subset X} {\displaystyle U,V\subset X} with x U , y V {\displaystyle x\in U,y\in V} {\displaystyle x\in U,y\in V} and u v {\displaystyle u\not \leq v} {\displaystyle u\not \leq v} for all u U , v V {\displaystyle u\in U,v\in V} {\displaystyle u\in U,v\in V}.
  • For all x , y X {\displaystyle x,y\in X} {\displaystyle x,y\in X} with x y {\displaystyle x\not \leq y} {\displaystyle x\not \leq y}, there are disjoint neighbourhoods U {\displaystyle U} {\displaystyle U} of x {\displaystyle x} {\displaystyle x} and V {\displaystyle V} {\displaystyle V} of y {\displaystyle y} {\displaystyle y} such that U {\displaystyle U} {\displaystyle U} is an upper set and V {\displaystyle V} {\displaystyle V} is a lower set.

The order topology is a special case of this definition, since a total order is also a partial order.

Properties

[edit ]

Every pospace is a Hausdorff space. If we take equality = {\displaystyle =} {\displaystyle =} as the partial order, this definition becomes the definition of a Hausdorff space.

Since the graph is closed, if ( x α ) α A {\displaystyle \left(x_{\alpha }\right)_{\alpha \in A}} {\displaystyle \left(x_{\alpha }\right)_{\alpha \in A}} and ( y α ) α A {\displaystyle \left(y_{\alpha }\right)_{\alpha \in A}} {\displaystyle \left(y_{\alpha }\right)_{\alpha \in A}} are nets converging to x and y, respectively, such that x α y α {\displaystyle x_{\alpha }\leq y_{\alpha }} {\displaystyle x_{\alpha }\leq y_{\alpha }} for all α {\displaystyle \alpha } {\displaystyle \alpha }, then x y {\displaystyle x\leq y} {\displaystyle x\leq y}.

See also

[edit ]

References

[edit ]
  1. ^ Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S. (2009). Continuous Lattices and Domains. doi:10.1017/CBO9780511542725. ISBN 9780521803380.
[edit ]
Key concepts
Results
Properties & Types (list)
Constructions
Topology & Orders
Related
Stub icon

This topology-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /