Jump to content
Wikipedia The Free Encyclopedia

Newton–Euler equations

From Wikipedia, the free encyclopedia
Rigid body equations in classical mechanics
Part of a series on
Classical mechanics
F = d p d t {\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}} {\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}

In classical mechanics, the Newton–Euler equations describe the combined translational and rotational dynamics of a rigid body.[1] [2] [3] [4] [5]

Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

Center of mass frame

[edit ]

With respect to a coordinate frame whose origin coincides with the body's center of mass for τ(torque) and an inertial frame of reference for F(force), they can be expressed in matrix form as:

( F τ ) = ( m I 3 0 0 I c m ) ( a c m α ) + ( 0 ω × I c m ω ) , {\displaystyle \left({\begin{matrix}{\mathbf {F} }\\{\boldsymbol {\tau }}\end{matrix}}\right)=\left({\begin{matrix}m{\mathbf {I} _{3}}&0\0円&{\mathbf {I} }_{\rm {cm}}\end{matrix}}\right)\left({\begin{matrix}\mathbf {a} _{\rm {cm}}\\{\boldsymbol {\alpha }}\end{matrix}}\right)+\left({\begin{matrix}0\\{\boldsymbol {\omega }}\times {\mathbf {I} }_{\rm {cm}},円{\boldsymbol {\omega }}\end{matrix}}\right),} {\displaystyle \left({\begin{matrix}{\mathbf {F} }\\{\boldsymbol {\tau }}\end{matrix}}\right)=\left({\begin{matrix}m{\mathbf {I} _{3}}&0\0円&{\mathbf {I} }_{\rm {cm}}\end{matrix}}\right)\left({\begin{matrix}\mathbf {a} _{\rm {cm}}\\{\boldsymbol {\alpha }}\end{matrix}}\right)+\left({\begin{matrix}0\\{\boldsymbol {\omega }}\times {\mathbf {I} }_{\rm {cm}},円{\boldsymbol {\omega }}\end{matrix}}\right),}

where

F = total force acting on the center of mass
m = mass of the body
I3 = the ×ばつ3 identity matrix
acm = acceleration of the center of mass
vcm = velocity of the center of mass
τ = total torque acting about the center of mass
Icm = moment of inertia about the center of mass
ω = angular velocity of the body
α = angular acceleration of the body

Any reference frame

[edit ]

With respect to a coordinate frame located at point P that is fixed in the body and not coincident with the center of mass, the equations assume the more complex form:

( F τ p ) = ( m I 3 m [ c ] × m [ c ] × I c m m [ c ] × [ c ] × ) ( a p α ) + ( m [ ω ] × [ ω ] × c [ ω ] × ( I c m m [ c ] × [ c ] × ) ω ) , {\displaystyle \left({\begin{matrix}{\mathbf {F} }\\{\boldsymbol {\tau }}_{\rm {p}}\end{matrix}}\right)=\left({\begin{matrix}m{\mathbf {I} _{3}}&-m[{\mathbf {c} }]^{\times }\\m[{\mathbf {c} }]^{\times }&{\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }\end{matrix}}\right)\left({\begin{matrix}\mathbf {a} _{\rm {p}}\\{\boldsymbol {\alpha }}\end{matrix}}\right)+\left({\begin{matrix}m[{\boldsymbol {\omega }}]^{\times }[{\boldsymbol {\omega }}]^{\times }{\mathbf {c} }\\{[{\boldsymbol {\omega }}]}^{\times }({\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }),円{\boldsymbol {\omega }}\end{matrix}}\right),} {\displaystyle \left({\begin{matrix}{\mathbf {F} }\\{\boldsymbol {\tau }}_{\rm {p}}\end{matrix}}\right)=\left({\begin{matrix}m{\mathbf {I} _{3}}&-m[{\mathbf {c} }]^{\times }\\m[{\mathbf {c} }]^{\times }&{\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }\end{matrix}}\right)\left({\begin{matrix}\mathbf {a} _{\rm {p}}\\{\boldsymbol {\alpha }}\end{matrix}}\right)+\left({\begin{matrix}m[{\boldsymbol {\omega }}]^{\times }[{\boldsymbol {\omega }}]^{\times }{\mathbf {c} }\\{[{\boldsymbol {\omega }}]}^{\times }({\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }),円{\boldsymbol {\omega }}\end{matrix}}\right),}

where c is the vector from P to the center of mass of the body expressed in the body-fixed frame, and

[ c ] × ( 0 c z c y c z 0 c x c y c x 0 ) [ ω ] × ( 0 ω z ω y ω z 0 ω x ω y ω x 0 ) {\displaystyle [\mathbf {c} ]^{\times }\equiv \left({\begin{matrix}0&-c_{z}&c_{y}\\c_{z}&0&-c_{x}\\-c_{y}&c_{x}&0\end{matrix}}\right)\qquad \qquad [\mathbf {\boldsymbol {\omega }} ]^{\times }\equiv \left({\begin{matrix}0&-\omega _{z}&\omega _{y}\\\omega _{z}&0&-\omega _{x}\\-\omega _{y}&\omega _{x}&0\end{matrix}}\right)} {\displaystyle [\mathbf {c} ]^{\times }\equiv \left({\begin{matrix}0&-c_{z}&c_{y}\\c_{z}&0&-c_{x}\\-c_{y}&c_{x}&0\end{matrix}}\right)\qquad \qquad [\mathbf {\boldsymbol {\omega }} ]^{\times }\equiv \left({\begin{matrix}0&-\omega _{z}&\omega _{y}\\\omega _{z}&0&-\omega _{x}\\-\omega _{y}&\omega _{x}&0\end{matrix}}\right)}

denote skew-symmetric cross product matrices.

The left hand side of the equation—which includes the sum of external forces, and the sum of external moments about P—describes a spatial wrench, see screw theory.

The inertial terms are contained in the spatial inertia matrix

( m I 3 m [ c ] × m [ c ] × I c m m [ c ] × [ c ] × ) , {\displaystyle \left({\begin{matrix}m{\mathbf {I} _{3}}&-m[{\mathbf {c} }]^{\times }\\m[{\mathbf {c} }]^{\times }&{\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }\end{matrix}}\right),} {\displaystyle \left({\begin{matrix}m{\mathbf {I} _{3}}&-m[{\mathbf {c} }]^{\times }\\m[{\mathbf {c} }]^{\times }&{\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }\end{matrix}}\right),}

while the fictitious forces are contained in the term:[6]

( m [ ω ] × [ ω ] × c [ ω ] × ( I c m m [ c ] × [ c ] × ) ω ) . {\displaystyle \left({\begin{matrix}m{[{\boldsymbol {\omega }}]}^{\times }{[{\boldsymbol {\omega }}]}^{\times }{\mathbf {c} }\\{[{\boldsymbol {\omega }}]}^{\times }({\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }),円{\boldsymbol {\omega }}\end{matrix}}\right).} {\displaystyle \left({\begin{matrix}m{[{\boldsymbol {\omega }}]}^{\times }{[{\boldsymbol {\omega }}]}^{\times }{\mathbf {c} }\\{[{\boldsymbol {\omega }}]}^{\times }({\mathbf {I} }_{\rm {cm}}-m[{\mathbf {c} }]^{\times }[{\mathbf {c} }]^{\times }),円{\boldsymbol {\omega }}\end{matrix}}\right).}

When the center of mass is not coincident with the coordinate frame (that is, when c is nonzero), the translational and angular accelerations (a and α) are coupled, so that each is associated with force and torque components.

Applications

[edit ]

The Newton–Euler equations are used as the basis for more complicated "multi-body" formulations (screw theory) that describe the dynamics of systems of rigid bodies connected by joints and other constraints. Multi-body problems can be solved by a variety of numerical algorithms.[2] [6] [7]

See also

[edit ]

References

[edit ]
  1. ^ Hubert Hahn (2002). Rigid Body Dynamics of Mechanisms. Springer. p. 143. ISBN 3-540-42373-7.
  2. ^ a b Ahmed A. Shabana (2001). Computational Dynamics. Wiley-Interscience. p. 379. ISBN 978-0-471-37144-1.
  3. ^ Haruhiko Asada, Jean-Jacques E. Slotine (1986). Robot Analysis and Control. Wiley/IEEE. pp. §5.1.1, p. 94. ISBN 0-471-83029-1.
  4. ^ Robert H. Bishop (2007). Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling. CRC Press. pp. §7.4.1, §7.4.2. ISBN 978-0-8493-9258-0.
  5. ^ Miguel A. Otaduy, Ming C. Lin (2006). High Fidelity Haptic Rendering. Morgan and Claypool Publishers. p. 24. ISBN 1-59829-114-9.
  6. ^ a b Roy Featherstone (2008). Rigid Body Dynamics Algorithms. Springer. ISBN 978-0-387-74314-1.
  7. ^ Constantinos A. Balafoutis, Rajnikant V. Patel (1991). Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach. Springer. Chapter 5. ISBN 0-7923-9145-4.
Publications
Other writings
Contributions
Newtonianism
Personal life
Relations
Depictions
Namesake
Categories

AltStyle によって変換されたページ (->オリジナル) /