Jump to content
Wikipedia The Free Encyclopedia

Newton's inequalities

From Wikipedia, the free encyclopedia

In mathematics, the Newton inequalities are named after Isaac Newton. Suppose a1a2, ..., an are non-negative real numbers and let e k {\displaystyle e_{k}} {\displaystyle e_{k}} denote the kth elementary symmetric polynomial in a1a2, ..., an. Then the elementary symmetric means, given by

S k = e k ( n k ) , {\displaystyle S_{k}={\frac {e_{k}}{\binom {n}{k}}},} {\displaystyle S_{k}={\frac {e_{k}}{\binom {n}{k}}},}

satisfy the inequality

S k 1 S k + 1 S k 2 . {\displaystyle S_{k-1}S_{k+1}\leq S_{k}^{2}.} {\displaystyle S_{k-1}S_{k+1}\leq S_{k}^{2}.}

Equality holds if and only if all the numbers ai are equal.

It can be seen that S1 is the arithmetic mean, and Sn is the n-th power of the geometric mean.

See also

[edit ]

References

[edit ]
  • Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952). Inequalities. Cambridge University Press. ISBN 978-0521358804.


Publications
Other writings
Contributions
Newtonianism
Personal life
Relations
Depictions
Namesake
Categories

AltStyle によって変換されたページ (->オリジナル) /