Johnson bound
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.
Definition
[edit ]Let {\displaystyle C} be a q-ary code of length {\displaystyle n}, i.e. a subset of {\displaystyle \mathbb {F} _{q}^{n}}. Let {\displaystyle d} be the minimum distance of {\displaystyle C}, i.e.
- {\displaystyle d=\min _{x,y\in C,x\neq y}d(x,y),}
where {\displaystyle d(x,y)} is the Hamming distance between {\displaystyle x} and {\displaystyle y}.
Let {\displaystyle C_{q}(n,d)} be the set of all q-ary codes with length {\displaystyle n} and minimum distance {\displaystyle d} and let {\displaystyle C_{q}(n,d,w)} denote the set of codes in {\displaystyle C_{q}(n,d)} such that every element has exactly {\displaystyle w} nonzero entries.
Denote by {\displaystyle |C|} the number of elements in {\displaystyle C}. Then, we define {\displaystyle A_{q}(n,d)} to be the largest size of a code with length {\displaystyle n} and minimum distance {\displaystyle d}:
- {\displaystyle A_{q}(n,d)=\max _{C\in C_{q}(n,d)}|C|.}
Similarly, we define {\displaystyle A_{q}(n,d,w)} to be the largest size of a code in {\displaystyle C_{q}(n,d,w)}:
- {\displaystyle A_{q}(n,d,w)=\max _{C\in C_{q}(n,d,w)}|C|.}
Theorem 1 (Johnson bound for {\displaystyle A_{q}(n,d)}):
If {\displaystyle d=2t+1},
- {\displaystyle A_{q}(n,d)\leq {\frac {q^{n}}{\sum _{i=0}^{t}{n \choose i}(q-1)^{i}+{\frac {{n \choose t+1}(q-1)^{t+1}-{d \choose t}A_{q}(n,d,d)}{A_{q}(n,d,t+1)}}}}.}
If {\displaystyle d=2t+2},
- {\displaystyle A_{q}(n,d)\leq {\frac {q^{n}}{\sum _{i=0}^{t}{n \choose i}(q-1)^{i}+{\frac {{n \choose t+1}(q-1)^{t+1}}{A_{q}(n,d,t+1)}}}}.}
Theorem 2 (Johnson bound for {\displaystyle A_{q}(n,d,w)}):
(i) If {\displaystyle d>2w,}
- {\displaystyle A_{q}(n,d,w)=1.}
(ii) If {\displaystyle d\leq 2w}, then define the variable {\displaystyle e} as follows. If {\displaystyle d} is even, then define {\displaystyle e} through the relation {\displaystyle d=2e}; if {\displaystyle d} is odd, define {\displaystyle e} through the relation {\displaystyle d=2e-1}. Let {\displaystyle q^{*}=q-1}. Then,
- {\displaystyle A_{q}(n,d,w)\leq \left\lfloor {\frac {nq^{*}}{w}}\left\lfloor {\frac {(n-1)q^{*}}{w-1}}\left\lfloor \cdots \left\lfloor {\frac {(n-w+e)q^{*}}{e}}\right\rfloor \cdots \right\rfloor \right\rfloor \right\rfloor }
where {\displaystyle \lfloor ~~\rfloor } is the floor function.
Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on {\displaystyle A_{q}(n,d)}.
See also
[edit ]- Elias Bassalygo bound
- Gilbert–Varshamov bound
- Griesmer bound
- Hamming bound
- Plotkin bound
- Singleton bound
References
[edit ]- Johnson, Selmer Martin (April 1962). "A new upper bound for error-correcting codes". IRE Transactions on Information Theory : 203–207.
- Huffman, William Cary; Pless, Vera S. (2003). Fundamentals of Error-Correcting Codes . Cambridge University Press. ISBN 978-0-521-78280-7.