Jump to content
Wikipedia The Free Encyclopedia

Elias Bassalygo bound

From Wikipedia, the free encyclopedia

The Elias Bassalygo bound is a mathematical limit used in coding theory for error correction during data transmission or communications.

Definition

[edit ]

Let C {\displaystyle C} {\displaystyle C} be a q {\displaystyle q} {\displaystyle q}-ary code of length n {\displaystyle n} {\displaystyle n}, i.e. a subset of [ q ] n {\displaystyle [q]^{n}} {\displaystyle [q]^{n}}.[1] Let R {\displaystyle R} {\displaystyle R} be the rate of C {\displaystyle C} {\displaystyle C}, δ {\displaystyle \delta } {\displaystyle \delta } the relative distance and

B q ( y , ρ n ) = { x [ q ] n   :   Δ ( x , y ) ρ n } {\displaystyle B_{q}(y,\rho n)=\left\{x\in [q]^{n}\ :\ \Delta (x,y)\leqslant \rho n\right\}} {\displaystyle B_{q}(y,\rho n)=\left\{x\in [q]^{n}\ :\ \Delta (x,y)\leqslant \rho n\right\}}

be the Hamming ball of radius ρ n {\displaystyle \rho n} {\displaystyle \rho n} centered at y {\displaystyle y} {\displaystyle y}. Let Vol q ( y , ρ n ) = | B q ( y , ρ n ) | {\displaystyle {\text{Vol}}_{q}(y,\rho n)=|B_{q}(y,\rho n)|} {\displaystyle {\text{Vol}}_{q}(y,\rho n)=|B_{q}(y,\rho n)|} be the volume of the Hamming ball of radius ρ n {\displaystyle \rho n} {\displaystyle \rho n}. It is obvious that the volume of a Hamming Ball is translation-invariant, i.e. indifferent to y . {\displaystyle y.} {\displaystyle y.} In particular, | B q ( y , ρ n ) | = | B q ( 0 , ρ n ) | . {\displaystyle |B_{q}(y,\rho n)|=|B_{q}(0,\rho n)|.} {\displaystyle |B_{q}(y,\rho n)|=|B_{q}(0,\rho n)|.}

With large enough n {\displaystyle n} {\displaystyle n}, the rate R {\displaystyle R} {\displaystyle R} and the relative distance δ {\displaystyle \delta } {\displaystyle \delta } satisfy the Elias-Bassalygo bound:

R 1 H q ( J q ( δ ) ) + o ( 1 ) , {\displaystyle R\leqslant 1-H_{q}(J_{q}(\delta ))+o(1),} {\displaystyle R\leqslant 1-H_{q}(J_{q}(\delta ))+o(1),}

where

H q ( x ) def x log q ( x q 1 ) ( 1 x ) log q ( 1 x ) {\displaystyle H_{q}(x)\equiv _{\text{def}}-x\log _{q}\left({x \over {q-1}}\right)-(1-x)\log _{q}{(1-x)}} {\displaystyle H_{q}(x)\equiv _{\text{def}}-x\log _{q}\left({x \over {q-1}}\right)-(1-x)\log _{q}{(1-x)}}

is the q-ary entropy function and

J q ( δ ) def ( 1 1 q ) ( 1 1 q δ q 1 ) {\displaystyle J_{q}(\delta )\equiv _{\text{def}}\left(1-{1 \over q}\right)\left(1-{\sqrt {1-{q\delta \over {q-1}}}}\right)} {\displaystyle J_{q}(\delta )\equiv _{\text{def}}\left(1-{1 \over q}\right)\left(1-{\sqrt {1-{q\delta \over {q-1}}}}\right)}

is a function related with Johnson bound.

Proof

[edit ]

To prove the Elias–Bassalygo bound, start with the following Lemma:

Lemma. For C [ q ] n {\displaystyle C\subseteq [q]^{n}} {\displaystyle C\subseteq [q]^{n}} and 0 e n {\displaystyle 0\leqslant e\leqslant n} {\displaystyle 0\leqslant e\leqslant n}, there exists a Hamming ball of radius e {\displaystyle e} {\displaystyle e} with at least
| C | Vol q ( 0 , e ) q n {\displaystyle {\frac {|C|{\text{Vol}}_{q}(0,e)}{q^{n}}}} {\displaystyle {\frac {|C|{\text{Vol}}_{q}(0,e)}{q^{n}}}}
codewords in it.
Proof of Lemma. Randomly pick a received word y [ q ] n {\displaystyle y\in [q]^{n}} {\displaystyle y\in [q]^{n}} and let B q ( y , 0 ) {\displaystyle B_{q}(y,0)} {\displaystyle B_{q}(y,0)} be the Hamming ball centered at y {\displaystyle y} {\displaystyle y} with radius e {\displaystyle e} {\displaystyle e}. Since y {\displaystyle y} {\displaystyle y} is (uniform) randomly selected the expected size of overlapped region | B q ( y , e ) C | {\displaystyle |B_{q}(y,e)\cap C|} {\displaystyle |B_{q}(y,e)\cap C|} is
| C | Vol q ( y , e ) q n {\displaystyle {\frac {|C|{\text{Vol}}_{q}(y,e)}{q^{n}}}} {\displaystyle {\frac {|C|{\text{Vol}}_{q}(y,e)}{q^{n}}}}
Since this is the expected value of the size, there must exist at least one y {\displaystyle y} {\displaystyle y} such that
| B q ( y , e ) C | | C | Vol q ( y , e ) q n = | C | Vol q ( 0 , e ) q n , {\displaystyle |B_{q}(y,e)\cap C|\geqslant {{|C|{\text{Vol}}_{q}(y,e)} \over {q^{n}}}={{|C|{\text{Vol}}_{q}(0,e)} \over {q^{n}}},} {\displaystyle |B_{q}(y,e)\cap C|\geqslant {{|C|{\text{Vol}}_{q}(y,e)} \over {q^{n}}}={{|C|{\text{Vol}}_{q}(0,e)} \over {q^{n}}},}
otherwise the expectation must be smaller than this value.

Now we prove the Elias–Bassalygo bound. Define e = n J q ( δ ) 1. {\displaystyle e=nJ_{q}(\delta )-1.} {\displaystyle e=nJ_{q}(\delta )-1.} By Lemma, there exists a Hamming ball with B {\displaystyle B} {\displaystyle B} codewords such that:

B | C | Vol ( 0 , e ) q n {\displaystyle B\geqslant {{|C|{\text{Vol}}(0,e)} \over {q^{n}}}} {\displaystyle B\geqslant {{|C|{\text{Vol}}(0,e)} \over {q^{n}}}}

By the Johnson bound, we have B q d n {\displaystyle B\leqslant qdn} {\displaystyle B\leqslant qdn}. Thus,

| C | q n d q n Vol q ( 0 , e ) q n ( 1 H q ( J q ( δ ) ) + o ( 1 ) ) {\displaystyle |C|\leqslant qnd\cdot {{q^{n}} \over {{\text{Vol}}_{q}(0,e)}}\leqslant q^{n(1-H_{q}(J_{q}(\delta ))+o(1))}} {\displaystyle |C|\leqslant qnd\cdot {{q^{n}} \over {{\text{Vol}}_{q}(0,e)}}\leqslant q^{n(1-H_{q}(J_{q}(\delta ))+o(1))}}

The second inequality follows from lower bound on the volume of a Hamming ball:

Vol q ( 0 , d 1 2 ) q H q ( δ 2 ) n o ( n ) . {\displaystyle {\text{Vol}}_{q}\left(0,\left\lfloor {\frac {d-1}{2}}\right\rfloor \right)\geqslant q^{H_{q}\left({\frac {\delta }{2}}\right)n-o(n)}.} {\displaystyle {\text{Vol}}_{q}\left(0,\left\lfloor {\frac {d-1}{2}}\right\rfloor \right)\geqslant q^{H_{q}\left({\frac {\delta }{2}}\right)n-o(n)}.}

Putting in d = 2 e + 1 {\displaystyle d=2e+1} {\displaystyle d=2e+1} and δ = d n {\displaystyle \delta ={\tfrac {d}{n}}} {\displaystyle \delta ={\tfrac {d}{n}}} gives the second inequality.

Therefore we have

R = log q | C | n 1 H q ( J q ( δ ) ) + o ( 1 ) {\displaystyle R={\log _{q}{|C|} \over n}\leqslant 1-H_{q}(J_{q}(\delta ))+o(1)} {\displaystyle R={\log _{q}{|C|} \over n}\leqslant 1-H_{q}(J_{q}(\delta ))+o(1)}

See also

[edit ]

References

[edit ]
  1. ^ Each q {\displaystyle q} {\displaystyle q}-ary block code of length n {\displaystyle n} {\displaystyle n} is a subset of the strings of A q n , {\displaystyle {\mathcal {A}}_{q}^{n},} {\displaystyle {\mathcal {A}}_{q}^{n},} where the alphabet set A q {\displaystyle {\mathcal {A}}_{q}} {\displaystyle {\mathcal {A}}_{q}} has q {\displaystyle q} {\displaystyle q} elements.

Bassalygo, L. A. (1965), "New upper bounds for error-correcting codes", Problems of Information Transmission, 1 (1): 32–35

Claude E. Shannon, Robert G. Gallager; Berlekamp, Elwyn R. (1967), "Lower bounds to error probability for coding on discrete memoryless channels. Part I.", Information and Control, 10: 65–103, doi:10.1016/s0019-9958(67)90052-6

Claude E. Shannon, Robert G. Gallager; Berlekamp, Elwyn R. (1967), "Lower bounds to error probability for coding on discrete memoryless channels. Part II.", Information and Control, 10: 522–552, doi:10.1016/s0019-9958(67)91200-4

AltStyle によって変換されたページ (->オリジナル) /