Elias Bassalygo bound
The Elias Bassalygo bound is a mathematical limit used in coding theory for error correction during data transmission or communications.
Definition
[edit ]Let {\displaystyle C} be a {\displaystyle q}-ary code of length {\displaystyle n}, i.e. a subset of {\displaystyle [q]^{n}}.[1] Let {\displaystyle R} be the rate of {\displaystyle C}, {\displaystyle \delta } the relative distance and
- {\displaystyle B_{q}(y,\rho n)=\left\{x\in [q]^{n}\ :\ \Delta (x,y)\leqslant \rho n\right\}}
be the Hamming ball of radius {\displaystyle \rho n} centered at {\displaystyle y}. Let {\displaystyle {\text{Vol}}_{q}(y,\rho n)=|B_{q}(y,\rho n)|} be the volume of the Hamming ball of radius {\displaystyle \rho n}. It is obvious that the volume of a Hamming Ball is translation-invariant, i.e. indifferent to {\displaystyle y.} In particular, {\displaystyle |B_{q}(y,\rho n)|=|B_{q}(0,\rho n)|.}
With large enough {\displaystyle n}, the rate {\displaystyle R} and the relative distance {\displaystyle \delta } satisfy the Elias-Bassalygo bound:
- {\displaystyle R\leqslant 1-H_{q}(J_{q}(\delta ))+o(1),}
where
- {\displaystyle H_{q}(x)\equiv _{\text{def}}-x\log _{q}\left({x \over {q-1}}\right)-(1-x)\log _{q}{(1-x)}}
is the q-ary entropy function and
- {\displaystyle J_{q}(\delta )\equiv _{\text{def}}\left(1-{1 \over q}\right)\left(1-{\sqrt {1-{q\delta \over {q-1}}}}\right)}
is a function related with Johnson bound.
Proof
[edit ]To prove the Elias–Bassalygo bound, start with the following Lemma:
- Lemma. For {\displaystyle C\subseteq [q]^{n}} and {\displaystyle 0\leqslant e\leqslant n}, there exists a Hamming ball of radius {\displaystyle e} with at least
- {\displaystyle {\frac {|C|{\text{Vol}}_{q}(0,e)}{q^{n}}}}
- codewords in it.
- Proof of Lemma. Randomly pick a received word {\displaystyle y\in [q]^{n}} and let {\displaystyle B_{q}(y,0)} be the Hamming ball centered at {\displaystyle y} with radius {\displaystyle e}. Since {\displaystyle y} is (uniform) randomly selected the expected size of overlapped region {\displaystyle |B_{q}(y,e)\cap C|} is
- {\displaystyle {\frac {|C|{\text{Vol}}_{q}(y,e)}{q^{n}}}}
- Since this is the expected value of the size, there must exist at least one {\displaystyle y} such that
- {\displaystyle |B_{q}(y,e)\cap C|\geqslant {{|C|{\text{Vol}}_{q}(y,e)} \over {q^{n}}}={{|C|{\text{Vol}}_{q}(0,e)} \over {q^{n}}},}
- otherwise the expectation must be smaller than this value.
Now we prove the Elias–Bassalygo bound. Define {\displaystyle e=nJ_{q}(\delta )-1.} By Lemma, there exists a Hamming ball with {\displaystyle B} codewords such that:
- {\displaystyle B\geqslant {{|C|{\text{Vol}}(0,e)} \over {q^{n}}}}
By the Johnson bound, we have {\displaystyle B\leqslant qdn}. Thus,
- {\displaystyle |C|\leqslant qnd\cdot {{q^{n}} \over {{\text{Vol}}_{q}(0,e)}}\leqslant q^{n(1-H_{q}(J_{q}(\delta ))+o(1))}}
The second inequality follows from lower bound on the volume of a Hamming ball:
- {\displaystyle {\text{Vol}}_{q}\left(0,\left\lfloor {\frac {d-1}{2}}\right\rfloor \right)\geqslant q^{H_{q}\left({\frac {\delta }{2}}\right)n-o(n)}.}
Putting in {\displaystyle d=2e+1} and {\displaystyle \delta ={\tfrac {d}{n}}} gives the second inequality.
Therefore we have
- {\displaystyle R={\log _{q}{|C|} \over n}\leqslant 1-H_{q}(J_{q}(\delta ))+o(1)}
See also
[edit ]References
[edit ]- ^ Each {\displaystyle q}-ary block code of length {\displaystyle n} is a subset of the strings of {\displaystyle {\mathcal {A}}_{q}^{n},} where the alphabet set {\displaystyle {\mathcal {A}}_{q}} has {\displaystyle q} elements.
Bassalygo, L. A. (1965), "New upper bounds for error-correcting codes", Problems of Information Transmission, 1 (1): 32–35
Claude E. Shannon, Robert G. Gallager; Berlekamp, Elwyn R. (1967), "Lower bounds to error probability for coding on discrete memoryless channels. Part I.", Information and Control, 10: 65–103, doi:10.1016/s0019-9958(67)90052-6
Claude E. Shannon, Robert G. Gallager; Berlekamp, Elwyn R. (1967), "Lower bounds to error probability for coding on discrete memoryless channels. Part II.", Information and Control, 10: 522–552, doi:10.1016/s0019-9958(67)91200-4