Holomycota
Holomycota | |
---|---|
Nuclearia | |
Scientific classification Edit this classification | |
Domain: | Eukaryota |
Clade: | Amorphea |
Clade: | Obazoa |
Clade: | Opisthokonta |
Clade: | Holomycota Liu et al., 2009 |
Groups[1] | |
| |
Synonyms | |
|
Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae,[3] as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle (one of the fungal hallmarks) was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids,[4] Microsporidia and Cryptomycota, three groups of endoparasites.[5]
Rozella (Cryptomycota) is the earliest diverging fungal genus in which chitin has been observed at least in some stages of their life cycle,[5] although the chitinous cell wall (another fungal hallmark) and osmotrophy originated in a common ancestor of Blastocladiomycota and Chytridiomycota, which still contain some ancestral characteristics such as the flagellum in zoosporic stage.[6] The groups of fungi with the characteristic hyphal growth, Zoopagomycota, Mucoromycotina and Dikarya, originated from a common ancestor ~700 Mya.[6] Zoopagomycota are mostly pathogens of animals or other fungi, Mucoromycotina is a more diverse group including parasites, saprotrophs or ectomycorrhizal.[5] Dikarya is the group embracing Ascomycota and Basidiomycota, which comprise ~98% of the described fungal species.[6] Because of this rich diversity, Dikarya includes highly morphologically distinct groups, from hyphae or unicellular yeasts (such as the model organism Saccharomyces cerevisiae ) to the complex multicellular fungi popularly known as mushrooms.[6] Contrary to animals and land plants with complex multicellularity, the inferred phylogenetic relationships indicate that fungi acquired and lost multicellularity multiple times along Ascomycota and Basidiomycota evolution.[7]
Phylogeny
[edit ]The phylogenetic tree depicts the fungi and their close relationship to other organisms, based on the work of Philippe Silar[8] and "The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research".[9] [10] The holomycota tree is following Tedersoo et al.[11] [12] [13]