Fox–Wright function
In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):
{\displaystyle {}_{p}\Psi _{q}\left[{\begin{matrix}(a_{1},A_{1})&(a_{2},A_{2})&\ldots &(a_{p},A_{p})\\(b_{1},B_{1})&(b_{2},B_{2})&\ldots &(b_{q},B_{q})\end{matrix}};z\right]=\sum _{n=0}^{\infty }{\frac {\Gamma (a_{1}+A_{1}n)\cdots \Gamma (a_{p}+A_{p}n)}{\Gamma (b_{1}+B_{1}n)\cdots \Gamma (b_{q}+B_{q}n)}},円{\frac {z^{n}}{n!}}.}
Upon changing the normalisation
{\displaystyle {}_{p}\Psi _{q}^{*}\left[{\begin{matrix}(a_{1},A_{1})&(a_{2},A_{2})&\ldots &(a_{p},A_{p})\\(b_{1},B_{1})&(b_{2},B_{2})&\ldots &(b_{q},B_{q})\end{matrix}};z\right]={\frac {\Gamma (b_{1})\cdots \Gamma (b_{q})}{\Gamma (a_{1})\cdots \Gamma (a_{p})}}\sum _{n=0}^{\infty }{\frac {\Gamma (a_{1}+A_{1}n)\cdots \Gamma (a_{p}+A_{p}n)}{\Gamma (b_{1}+B_{1}n)\cdots \Gamma (b_{q}+B_{q}n)}},円{\frac {z^{n}}{n!}}}
it becomes pFq(z) for A1...p = B1...q = 1.
The Fox–Wright function is a special case of the Fox H-function (Srivastava & Manocha 1984, p. 50):
{\displaystyle {}_{p}\Psi _{q}\left[{\begin{matrix}(a_{1},A_{1})&(a_{2},A_{2})&\ldots &(a_{p},A_{p})\\(b_{1},B_{1})&(b_{2},B_{2})&\ldots &(b_{q},B_{q})\end{matrix}};z\right]=H_{p,q+1}^{1,p}\left[-z\left|{\begin{matrix}(1-a_{1},A_{1})&(1-a_{2},A_{2})&\ldots &(1-a_{p},A_{p})\\(0,1)&(1-b_{1},B_{1})&(1-b_{2},B_{2})&\ldots &(1-b_{q},B_{q})\end{matrix}}\right.\right].}
A special case of Fox–Wright function appears as a part of the normalizing constant of the modified half-normal distribution [1] with the pdf on {\displaystyle (0,\infty )} is given as {\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}}, where {\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)} denotes the Fox–Wright Psi function.
Wright function
[edit ]The entire function {\displaystyle W_{\lambda ,\mu }(z)} is often called the Wright function.[2] It is the special case of {\displaystyle {}_{0}\Psi _{1}\left[\ldots \right]} of the Fox–Wright function. Its series representation is
{\displaystyle W_{\lambda ,\mu }(z)=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!,円\Gamma (\lambda n+\mu )}},\lambda >-1.}
This function is used extensively in fractional calculus. Recall that {\displaystyle \lim \limits _{\lambda \to 0}W_{\lambda ,\mu }(z)=e^{z}/\Gamma (\mu )}. Hence, a non-zero {\displaystyle \lambda } with zero {\displaystyle \mu } is the simplest nontrivial extension of the exponential function in such context.
Three properties were stated in Theorem 1 of Wright (1933)[3] and 18.1(30–32) of Erdelyi, Bateman Project, Vol 3 (1955)[4] (p. 212)
{\displaystyle {\begin{aligned}\lambda zW_{\lambda ,\mu +\lambda }(z)&=W_{\lambda ,\mu -1}(z)+(1-\mu )W_{\lambda ,\mu }(z)&(a)\\[6pt]{d \over dz}W_{\lambda ,\mu }(z)&=W_{\lambda ,\mu +\lambda }(z)&(b)\\[6pt]\lambda z{d \over dz}W_{\lambda ,\mu }(z)&=W_{\lambda ,\mu -1}(z)+(1-\mu )W_{\lambda ,\mu }(z)&(c)\end{aligned}}}
Equation (a) is a recurrence formula. (b) and (c) provide two paths to reduce a derivative. And (c) can be derived from (a) and (b).
A special case of (c) is {\displaystyle \lambda =-c\alpha ,\mu =0}. Replacing {\displaystyle z} with {\displaystyle -x^{\alpha }}, we have
{\displaystyle {\begin{array}{lcl}x{d \over dx}W_{-c\alpha ,0}(-x^{\alpha })&=&-{\frac {1}{c}}\left[W_{-c\alpha ,-1}(-x^{\alpha })+W_{-c\alpha ,0}(-x^{\alpha })\right]\end{array}}}
A special case of (a) is {\displaystyle \lambda =-\alpha ,\mu =1}. Replacing {\displaystyle z} with {\displaystyle -z}, we have {\displaystyle \alpha zW_{-\alpha ,1-\alpha }(-z)=W_{-\alpha ,0}(-z)}
Two notations, {\displaystyle M_{\alpha }(z)} and {\displaystyle F_{\alpha }(z)}, were used extensively in the literatures:
{\displaystyle {\begin{aligned}M_{\alpha }(z)&=W_{-\alpha ,1-\alpha }(-z),\\[1ex]\implies F_{\alpha }(z)&=W_{-\alpha ,0}(-z)=\alpha zM_{\alpha }(z).\end{aligned}}}
M-Wright function
[edit ]{\displaystyle M_{\alpha }(z)} is known as the M-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes, generally referred to as time-fractional diffusion processes.
Its properties were surveyed in Mainardi et al (2010).[5]
Its asymptotic expansion of {\displaystyle M_{\alpha }(z)} for {\displaystyle \alpha >0} is {\displaystyle M_{\alpha }\left({\frac {r}{\alpha }}\right)=A(\alpha ),円r^{(\alpha -1/2)/(1-\alpha )},円e^{-B(\alpha ),円r^{1/(1-\alpha )}},,円,円r\rightarrow \infty ,} where {\displaystyle A(\alpha )={\frac {1}{\sqrt {2\pi (1-\alpha )}}},} {\displaystyle B(\alpha )={\frac {1-\alpha }{\alpha }}.}
See also
[edit ]- Prabhakar function
- Hypergeometric function
- Generalized hypergeometric function
- Modified half-normal distribution [1] with the pdf on {\displaystyle (0,\infty )} is given as {\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}}, where {\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)} denotes the Fox–Wright Psi function.
References
[edit ]- ^ a b Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics – Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.
- ^ Weisstein, Eric W. "Wright Function". From MathWorld--A Wolfram Web Resource. Retrieved 2022年12月03日.
- ^ Wright, E. (1933). "On the Coefficients of Power Series Having Exponential Singularities". Journal of the London Mathematical Society. Second Series: 71–79. doi:10.1112/JLMS/S1-8.1.71. S2CID 122652898.
- ^ Erdelyi, A (1955). The Bateman Project, Volume 3. California Institute of Technology.
- ^ Mainardi, Francesco; Mura, Antonio; Pagnini, Gianni (2010年02月11日). "The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey". International Journal of Differential Equations. 2010 (1) 104505. doi:10.1155/2010/104505 .
- Fox, C. (1928). "The asymptotic expansion of integral functions defined by generalized hypergeometric series". Proc. London Math. Soc. 27 (1): 389–400. doi:10.1112/plms/s2-27.1.389.
- Wright, E. M. (1935). "The asymptotic expansion of the generalized hypergeometric function". J. London Math. Soc. 10 (4): 286–293. doi:10.1112/jlms/s1-10.40.286.
- Wright, E. M. (1940). "The asymptotic expansion of the generalized hypergeometric function". Proc. London Math. Soc. 46 (2): 389–408. doi:10.1112/plms/s2-46.1.389.
- Wright, E. M. (1952). "Erratum to "The asymptotic expansion of the generalized hypergeometric function"". J. London Math. Soc. 27: 254. doi:10.1112/plms/s2-54.3.254-s .
- Srivastava, H.M.; Manocha, H.L. (1984). A treatise on generating functions. E. Horwood. ISBN 0-470-20010-3.
- Miller, A. R.; Moskowitz, I.S. (1995). "Reduction of a Class of Fox–Wright Psi Functions for Certain Rational Parameters". Computers Math. Applic. 30 (11): 73–82. doi:10.1016/0898-1221(95)00165-u .
- Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics – Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.