Jump to content
Wikipedia The Free Encyclopedia

Wright omega function

From Wikipedia, the free encyclopedia
(Redirected from Wright Omega function)
Mathematical function
The Wright omega function along part of the real axis

In mathematics, the Wright omega function or Wright function,[note 1] denoted ω, is defined in terms of the Lambert W function as:

ω ( z ) = W I m ( z ) π 2 π ( e z ) . {\displaystyle \omega (z)=W_{{\big \lceil }{\frac {\mathrm {Im} (z)-\pi }{2\pi }}{\big \rceil }}(e^{z}).} {\displaystyle \omega (z)=W_{{\big \lceil }{\frac {\mathrm {Im} (z)-\pi }{2\pi }}{\big \rceil }}(e^{z}).}

It is simpler to be defined by its inverse function

z ( ω ) = ln ( ω ) + ω {\displaystyle z(\omega )=\ln(\omega )+\omega } {\displaystyle z(\omega )=\ln(\omega )+\omega }

Uses

[edit ]

One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = e−ω(π i).

y = ω(z) is the unique solution, when z x ± i π {\displaystyle z\neq x\pm i\pi } {\displaystyle z\neq x\pm i\pi } for x ≤ −1, of the equation y + ln(y) = z. Except for those two values, the Wright omega function is continuous, even analytic.

Properties

[edit ]

The Wright omega function satisfies the relation W k ( z ) = ω ( ln ( z ) + 2 π i k ) {\displaystyle W_{k}(z)=\omega (\ln(z)+2\pi ik)} {\displaystyle W_{k}(z)=\omega (\ln(z)+2\pi ik)}.

It also satisfies the differential equation

d ω d z = ω 1 + ω {\displaystyle {\frac {d\omega }{dz}}={\frac {\omega }{1+\omega }}} {\displaystyle {\frac {d\omega }{dz}}={\frac {\omega }{1+\omega }}}

wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation ln ( ω ) + ω = z {\displaystyle \ln(\omega )+\omega =z} {\displaystyle \ln(\omega )+\omega =z}, and as a consequence its integral can be expressed as:

ω n d z = { ω n + 1 1 n + 1 + ω n n if  n 1 , ln ( ω ) 1 ω if  n = 1. {\displaystyle \int \omega ^{n},円dz={\begin{cases}{\frac {\omega ^{n+1}-1}{n+1}}+{\frac {\omega ^{n}}{n}}&{\mbox{if }}n\neq -1,\\\ln(\omega )-{\frac {1}{\omega }}&{\mbox{if }}n=-1.\end{cases}}} {\displaystyle \int \omega ^{n},円dz={\begin{cases}{\frac {\omega ^{n+1}-1}{n+1}}+{\frac {\omega ^{n}}{n}}&{\mbox{if }}n\neq -1,\\\ln(\omega )-{\frac {1}{\omega }}&{\mbox{if }}n=-1.\end{cases}}}

Its Taylor series around the point a = ω a + ln ( ω a ) {\displaystyle a=\omega _{a}+\ln(\omega _{a})} {\displaystyle a=\omega _{a}+\ln(\omega _{a})} takes the form :

ω ( z ) = n = 0 + q n ( ω a ) ( 1 + ω a ) 2 n 1 ( z a ) n n ! {\displaystyle \omega (z)=\sum _{n=0}^{+\infty }{\frac {q_{n}(\omega _{a})}{(1+\omega _{a})^{2n-1}}}{\frac {(z-a)^{n}}{n!}}} {\displaystyle \omega (z)=\sum _{n=0}^{+\infty }{\frac {q_{n}(\omega _{a})}{(1+\omega _{a})^{2n-1}}}{\frac {(z-a)^{n}}{n!}}}

where

q n ( w ) = k = 0 n 1 n + 1 k ( 1 ) k w k + 1 {\displaystyle q_{n}(w)=\sum _{k=0}^{n-1}{\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n+1\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }(-1)^{k}w^{k+1}} {\displaystyle q_{n}(w)=\sum _{k=0}^{n-1}{\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n+1\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }(-1)^{k}w^{k+1}}

in which

n k {\displaystyle {\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }} {\displaystyle {\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }}

is a second-order Eulerian number.

Values

[edit ]
ω ( 0 ) = W 0 ( 1 ) 0.56714 ω ( 1 ) = 1 ω ( 1 ± i π ) = 1 ω ( 1 3 + ln ( 1 3 ) + i π ) = 1 3 ω ( 1 3 + ln ( 1 3 ) i π ) = W 1 ( 1 3 e 1 3 ) 2.237147028 {\displaystyle {\begin{array}{lll}\omega (0)&=W_{0}(1)&\approx 0.56714\\\omega (1)&=1&\\\omega (-1\pm i\pi )&=-1&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)+i\pi )&=-{\frac {1}{3}}&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)-i\pi )&=W_{-1}\left(-{\frac {1}{3}}e^{-{\frac {1}{3}}}\right)&\approx -2.237147028\\\end{array}}} {\displaystyle {\begin{array}{lll}\omega (0)&=W_{0}(1)&\approx 0.56714\\\omega (1)&=1&\\\omega (-1\pm i\pi )&=-1&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)+i\pi )&=-{\frac {1}{3}}&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)-i\pi )&=W_{-1}\left(-{\frac {1}{3}}e^{-{\frac {1}{3}}}\right)&\approx -2.237147028\\\end{array}}}

Plots

[edit ]
This section's factual accuracy is disputed . Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (August 2025) (Learn how and when to remove this message)


Notes

[edit ]
  1. ^ Not to be confused with the Fox–Wright function, also known as Wright function.
  2. ^ This plot has been reported as incorrect; see Talk page.

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /