Wright omega function
In mathematics, the Wright omega function or Wright function,[note 1] denoted ω, is defined in terms of the Lambert W function as:
- {\displaystyle \omega (z)=W_{{\big \lceil }{\frac {\mathrm {Im} (z)-\pi }{2\pi }}{\big \rceil }}(e^{z}).}
It is simpler to be defined by its inverse function
- {\displaystyle z(\omega )=\ln(\omega )+\omega }
Uses
[edit ]One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = e−ω(π i).
y = ω(z) is the unique solution, when {\displaystyle z\neq x\pm i\pi } for x ≤ −1, of the equation y + ln(y) = z. Except for those two values, the Wright omega function is continuous, even analytic.
Properties
[edit ]The Wright omega function satisfies the relation {\displaystyle W_{k}(z)=\omega (\ln(z)+2\pi ik)}.
It also satisfies the differential equation
- {\displaystyle {\frac {d\omega }{dz}}={\frac {\omega }{1+\omega }}}
wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation {\displaystyle \ln(\omega )+\omega =z}, and as a consequence its integral can be expressed as:
- {\displaystyle \int \omega ^{n},円dz={\begin{cases}{\frac {\omega ^{n+1}-1}{n+1}}+{\frac {\omega ^{n}}{n}}&{\mbox{if }}n\neq -1,\\\ln(\omega )-{\frac {1}{\omega }}&{\mbox{if }}n=-1.\end{cases}}}
Its Taylor series around the point {\displaystyle a=\omega _{a}+\ln(\omega _{a})} takes the form :
- {\displaystyle \omega (z)=\sum _{n=0}^{+\infty }{\frac {q_{n}(\omega _{a})}{(1+\omega _{a})^{2n-1}}}{\frac {(z-a)^{n}}{n!}}}
where
- {\displaystyle q_{n}(w)=\sum _{k=0}^{n-1}{\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n+1\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }(-1)^{k}w^{k+1}}
in which
- {\displaystyle {\bigg \langle }\!\!{\bigg \langle }{\begin{matrix}n\\k\end{matrix}}{\bigg \rangle }\!\!{\bigg \rangle }}
is a second-order Eulerian number.
Values
[edit ]- {\displaystyle {\begin{array}{lll}\omega (0)&=W_{0}(1)&\approx 0.56714\\\omega (1)&=1&\\\omega (-1\pm i\pi )&=-1&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)+i\pi )&=-{\frac {1}{3}}&\\\omega (-{\frac {1}{3}}+\ln \left({\frac {1}{3}}\right)-i\pi )&=W_{-1}\left(-{\frac {1}{3}}e^{-{\frac {1}{3}}}\right)&\approx -2.237147028\\\end{array}}}
Plots
[edit ]- Plots of the Wright omega function on the complex plane
-
{\displaystyle z=\Re \{\omega (x+iy)\}}
-
{\displaystyle z=\Im \{\omega (x+iy)\}}[note 2]
-
{\displaystyle z=|\omega (x+iy)|}
Notes
[edit ]- ^ Not to be confused with the Fox–Wright function, also known as Wright function.
- ^ This plot has been reported as incorrect; see Talk page.