Jump to content
Wikipedia The Free Encyclopedia

Product order

From Wikipedia, the free encyclopedia
(Redirected from Coordinatewise order)
Construction in order theory
For the business concept, see purchase order.
Hasse diagram of the product order on N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} } ×ばつ N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} }

In mathematics, given partial orders {\displaystyle \preceq } {\displaystyle \preceq } and {\displaystyle \sqsubseteq } {\displaystyle \sqsubseteq } on sets A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B}, respectively, the product order[1] [2] [3] [4] (also called the coordinatewise order[5] [3] [6] or componentwise order[2] [7] ) is a partial order {\displaystyle \leq } {\displaystyle \leq } on the Cartesian product A × B . {\displaystyle A\times B.} {\displaystyle A\times B.} Given two pairs ( a 1 , b 1 ) {\displaystyle \left(a_{1},b_{1}\right)} {\displaystyle \left(a_{1},b_{1}\right)} and ( a 2 , b 2 ) {\displaystyle \left(a_{2},b_{2}\right)} {\displaystyle \left(a_{2},b_{2}\right)} in A × B , {\displaystyle A\times B,} {\displaystyle A\times B,} declare that ( a 1 , b 1 ) ( a 2 , b 2 ) {\displaystyle \left(a_{1},b_{1}\right)\leq \left(a_{2},b_{2}\right)} {\displaystyle \left(a_{1},b_{1}\right)\leq \left(a_{2},b_{2}\right)} if a 1 a 2 {\displaystyle a_{1}\preceq a_{2}} {\displaystyle a_{1}\preceq a_{2}} and b 1 b 2 . {\displaystyle b_{1}\sqsubseteq b_{2}.} {\displaystyle b_{1}\sqsubseteq b_{2}.}

Another possible order on A × B {\displaystyle A\times B} {\displaystyle A\times B} is the lexicographical order. It is a total order if both A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B} are totally ordered. However the product order of two total orders is not in general total; for example, the pairs ( 0 , 1 ) {\displaystyle (0,1)} {\displaystyle (0,1)} and ( 1 , 0 ) {\displaystyle (1,0)} {\displaystyle (1,0)} are incomparable in the product order of the order 0 < 1 {\displaystyle 0<1} {\displaystyle 0<1} with itself. The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order.[3]

The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions.[7]

The product order generalizes to arbitrary (possibly infinitary) Cartesian products. Suppose A {\displaystyle A\neq \varnothing } {\displaystyle A\neq \varnothing } is a set and for every a A , {\displaystyle a\in A,} {\displaystyle a\in A,} ( I a , ) {\displaystyle \left(I_{a},\leq \right)} {\displaystyle \left(I_{a},\leq \right)} is a preordered set. Then the product preorder on a A I a {\displaystyle \prod _{a\in A}I_{a}} {\displaystyle \prod _{a\in A}I_{a}} is defined by declaring for any i = ( i a ) a A {\displaystyle i_{\bullet }=\left(i_{a}\right)_{a\in A}} {\displaystyle i_{\bullet }=\left(i_{a}\right)_{a\in A}} and j = ( j a ) a A {\displaystyle j_{\bullet }=\left(j_{a}\right)_{a\in A}} {\displaystyle j_{\bullet }=\left(j_{a}\right)_{a\in A}} in a A I a , {\displaystyle \prod _{a\in A}I_{a},} {\displaystyle \prod _{a\in A}I_{a},} that

i j {\displaystyle i_{\bullet }\leq j_{\bullet }} {\displaystyle i_{\bullet }\leq j_{\bullet }} if and only if i a j a {\displaystyle i_{a}\leq j_{a}} {\displaystyle i_{a}\leq j_{a}} for every a A . {\displaystyle a\in A.} {\displaystyle a\in A.}

If every ( I a , ) {\displaystyle \left(I_{a},\leq \right)} {\displaystyle \left(I_{a},\leq \right)} is a partial order then so is the product preorder.

Furthermore, given a set A , {\displaystyle A,} {\displaystyle A,} the product order over the Cartesian product a A { 0 , 1 } {\displaystyle \prod _{a\in A}\{0,1\}} {\displaystyle \prod _{a\in A}\{0,1\}} can be identified with the inclusion order of subsets of A . {\displaystyle A.} {\displaystyle A.}[4]

The notion applies equally well to preorders. The product order is also the categorical product in a number of richer categories, including lattices and Boolean algebras.[7]

See also

[edit ]

References

[edit ]
  1. ^ Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order", Basic Posets, World Scientific, pp. 64–78, ISBN 9789810235895
  2. ^ a b Sudhir R. Ghorpade; Balmohan V. Limaye (2010). A Course in Multivariable Calculus and Analysis. Springer. p. 5. ISBN 978-1-4419-1621-1.
  3. ^ a b c Egbert Harzheim (2006). Ordered Sets. Springer. pp. 86–88. ISBN 978-0-387-24222-4.
  4. ^ a b Victor W. Marek (2009). Introduction to Mathematics of Satisfiability. CRC Press. p. 17. ISBN 978-1-4398-0174-1.
  5. ^ Davey & Priestley, Introduction to Lattices and Order (Second Edition), 2002, p. 18
  6. ^ Alexander Shen; Nikolai Konstantinovich Vereshchagin (2002). Basic Set Theory. American Mathematical Soc. p. 43. ISBN 978-0-8218-2731-4.
  7. ^ a b c Paul Taylor (1999). Practical Foundations of Mathematics. Cambridge University Press. pp. 144–145 and 216. ISBN 978-0-521-63107-5.
Key concepts
Results
Properties & Types (list)
Constructions
Topology & Orders
Related


Stub icon

This mathematics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /