Jump to content
Wikipedia The Free Encyclopedia

Armor (hydrology)

From Wikipedia, the free encyclopedia
Association of surface rocks with stream beds or beaches
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (March 2024) (Learn how and when to remove this message)
Armour of basalt blocks

In hydrology and geography, armor is the association of surface pebbles, rocks or boulders with stream beds or beaches. Most commonly hydrological armor occurs naturally; however, a man-made form is usually called riprap , when shorelines or stream banks are fortified for erosion protection with large boulders or sizable manufactured concrete objects. When armor is associated with beaches in the form of pebbles to medium-sized stones grading from two to 200 millimeters across, the resulting landform is often termed a shingle beach . Hydrological modeling indicates that stream armor typically persists in a flood stage environment.[1]

Hjulstroms diagram

[edit ]
Main article: Hjulström curve
The Hjulstroms diagram

Bed armor is most often transported through entrainment, and more specifically suspension and saltation. Both of these processes involve moving the sediment both near and around the bed of a river. When a sediment is entrained it is being moved downstream through the forces between the layers of water around it, and once it settles it begins to create a layer on the bed of the river. This layer of sediment changes the hydrology of the river around it, as once this layer on the bottom is formed it affects the hydraulics of the river. This layer of sediments on the bed of the river can act as barrier to the incoming flow, and depending on the size and distribution of the grains, can change the river.

The Hjulstroms diagram represents at what grain size and flow speed a particle is transported. The slope present at the top left of its graph is due to clay and silt cohesion.

Particle size

[edit ]

The distribution and size of the sediments can sometimes help indicate the type of river, and the general flow direction. The grain distribution of the bed armor is essential to understanding the armor, and its function that is dependent on the size of the armor. For example, if there is a large piece of sediment that sits on the bed armor layer of the river it can change the threshold for critical flow. The change in critical flow at the bottom of the stream or river can change the turbidity of the flow, and create different types of river systems depending on the range of impact the change in flow has. This effect can create a positive loop, with the critical flow disrupting smaller sediments downstream which repeat the process.

Stream power

[edit ]

Stream power expresses the amount of energy that a river is exerting on its bed. The equation is primarily used to understand the force in terms of the water doing work on the bed. Bed armor is directly involved with this equations, when the force on the stream increases the water acting on the sediments can also increase. This can lead to change and movement within the stream in reference to the sediments on the bottom layer.

See also

[edit ]
  • Storm surge – Rise of water associated with a low-pressure weather system
  • Bridge scour – Erosion of sediment near bridge foundations by water

References

[edit ]
  1. ^ Wilcock, Peter R.; DeTemple, Brendan T. (April 2005). "Persistence of armor layers in gravel-bed streams". Geophysical Research Letters. 32 (8): L08402. Bibcode:2005GeoRL..32.8402W. doi:10.1029/2004GL021772 .
Rivers
(lists)
Streams
Springs
(list)
Sedimentary processes
and erosion
Fluvial landforms
Fluvial flow
Surface runoff
Floods and stormwater
Point source pollution
River measurement
and modelling
River engineering
River sports
Related
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
Scientific projects
Awards and events
Incidents
Dive boat incidents
Diver rescues
Early diving
Freediving fatalities
Offshore
diving
incidents
Professional
diving
fatalities
Scuba diving
fatalities
Publications
Manuals
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
    Training and registration
    Diver
    training
    Skills
    Recreational
    scuba
    certification
    levels
    Core diving skills
    Leadership skills
    Specialist skills
    Diver training
    certification
    and registration
    organisations
    Commercial diver
    certification
    authorities
    Commercial diving
    schools
    Free-diving
    certification
    agencies
    Recreational
    scuba
    certification
    agencies
    Scientific diver
    certification
    authorities
    Technical diver
    certification
    agencies
    Cave
    diving
    Military diver
    training centres
    Military diver
    training courses
    Surface snorkeling
    Snorkeling/breath-hold
    Breath-hold
    Open Circuit Scuba
    Rebreather
    Sports governing
    organisations
    and federations
    Competitions
    Pioneers
    of diving
    Underwater
    scientists
    archaeologists and
    environmentalists
    Scuba record
    holders
    Underwater
    filmmakers
    and presenters
    Underwater
    photographers
    Underwater
    explorers
    Aquanauts
    Writers and journalists
    Rescuers
    Frogmen
    Commercial salvors
    Diving
    physics
    Diving
    physiology
    Decompression
    theory
    Diving
    environments
    Classification
    Impact
    Other
    Deep-submergence
    vehicle
    Submarine rescue
    Deep-submergence
    rescue vehicle
    Submarine escape
    Escape set
    Special
    interest
    groups
    Neutral buoyancy
    facilities for
    Astronaut training
    Other

    AltStyle によって変換されたページ (->オリジナル) /