Namespaces
Variants
Actions

std::ranges::fold_left

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Numeric operations
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
    
Set operations (on sorted ranges)
Heap operations
     
         
Minimum/maximum operations
       
       
Permutation operations
Fold operations
fold_left
(C++23)
(C++23)  
(C++23)
(C++23)  
Defined in header <algorithm>
Call signature
(1)
template< std::input_iterator I, std::sentinel_for <I> S, class T,

          /* indirectly-binary-left-foldable */<T, I> F >

constexpr auto fold_left( I first, S last, T init, F f );
(since C++23)
(until C++26)
template< std::input_iterator I, std::sentinel_for <I> S,

          class T = std::iter_value_t <I>,
          /* indirectly-binary-left-foldable */<T, I> F >

constexpr auto fold_left( I first, S last, T init, F f );
(since C++26)
(2)
template< ranges::input_range R, class T,

          /* indirectly-binary-left-foldable */
              <T, ranges::iterator_t <R>> F >

constexpr auto fold_left( R&& r, T init, F f );
(since C++23)
(until C++26)
template< ranges::input_range R, class T = ranges::range_value_t <R>,

          /* indirectly-binary-left-foldable */
              <T, ranges::iterator_t <R>> F >

constexpr auto fold_left( R&& r, T init, F f );
(since C++26)
Helper concepts
template< class F, class T, class I >
concept /* indirectly-binary-left-foldable */ = /* see description */;
(3) (exposition only*)

Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(init, x1), x2), ...), xn), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_left behaves like std::accumulate 's overload that accepts a binary predicate.

The behavior is undefined if [firstlast) is not a valid range.

1) The range is [firstlast). Equivalent to return ranges::fold_left_with_iter (std::move(first), last, std::move(init), f).value.
2) Same as (1), except that uses r as the range, as if by using ranges::begin (r) as first and ranges::end (r) as last.
3) Equivalent to:
Helper concepts
template< class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
    std::movable <T> &&
    std::movable <U> &&
    std::convertible_to <T, U> &&
    std::invocable <F&, U, std::iter_reference_t <I>> &&
    std::assignable_from <U&,

        std::invoke_result_t <F&, U, std::iter_reference_t <I>>>;
(3A) (exposition only*)
template< class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
    std::copy_constructible <F> &&
    std::indirectly_readable <I> &&
    std::invocable <F&, T, std::iter_reference_t <I>> &&
    std::convertible_to <std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
        std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
    /*indirectly-binary-left-foldable-impl*/<F, T, I,

        std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>>;
(3B) (exposition only*)

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to fold
r - the range of elements to fold
init - the initial value of the fold
f - the binary function object

[edit] Return value

An object of type U that contains the result of left-fold of the given range over f, where U is equivalent to std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>.

If the range is empty, U(std::move(init)) is returned.

[edit] Possible implementations

struct fold_left_fn
{
 template<std::input_iterator I, std::sentinel_for <I> S, class T = std::iter_value_t <I>,
 /* indirectly-binary-left-foldable */<T, I> F>
 constexpr auto operator()(I first, S last, T init, F f) const
 {
 using U = std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>;
 if (first == last)
 return U(std::move(init));
 U accum = std::invoke (f, std::move(init), *first);
 for (++first; first != last; ++first)
 accum = std::invoke (f, std::move(accum), *first);
 return std::move(accum);
 }
 
 template<ranges::input_range R, class T = ranges::range_value_t <R>,
 /* indirectly-binary-left-foldable */<T, ranges::iterator_t <R>> F>
 constexpr auto operator()(R&& r, T init, F f) const
 {
 return (*this)(ranges::begin (r), ranges::end (r), std::move(init), std::ref (f));
 }
};
 
inline constexpr fold_left_fn fold_left;

[edit] Complexity

Exactly ranges::distance (first, last) applications of the function object f.

[edit] Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional <U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional <U>
ranges::fold_left_with_iter left init

(1) ranges::in_value_result <I, U>

(2) ranges::in_value_result <BR, U>,

where BR is ranges::borrowed_iterator_t <R>

ranges::fold_left_first_with_iter left first element

(1) ranges::in_value_result <I, std::optional <U>>

(2) ranges::in_value_result <BR, std::optional <U>>

where BR is ranges::borrowed_iterator_t <R>

Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms
__cpp_lib_algorithm_default_value_type 202403L (C++26) List-initialization for algorithms (1,2)

[edit] Example

Run this code
#include <algorithm>
#include <complex>
#include <functional>
#include <iostream>
#include <ranges>
#include <string>
#include <utility>
#include <vector>
 
int main()
{
 namespace ranges = std::ranges;
 
 std::vector v{1, 2, 3, 4, 5, 6, 7, 8};
 
 int sum = ranges::fold_left(v.begin(), v.end(), 0, std::plus <int>()); // (1)
 std::cout << "sum: " << sum << '\n';
 
 int mul = ranges::fold_left(v, 1, std::multiplies <int>()); // (2)
 std::cout << "mul: " << mul << '\n';
 
 // get the product of the std::pair::second of all pairs in the vector:
 std::vector <std::pair <char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}};
 float sec = ranges::fold_left
 (
 data | ranges::views::values, 2.0f, std::multiplies <>()
 );
 std::cout << "sec: " << sec << '\n';
 
 // use a program defined function object (lambda-expression):
 std::string str = ranges::fold_left
 (
 v, "A", [](std::string s, int x) { return s + ':' + std::to_string (x); }
 );
 std::cout << "str: " << str << '\n';
 
 using CD = std::complex <double>;
 std::vector <CD> nums{{1, 1}, {2, 0}, {3, 0}};
 #ifdef __cpp_lib_algorithm_default_value_type
 auto res = ranges::fold_left(nums, {7, 0}, std::multiplies {}); // (2)
 #else
 auto res = ranges::fold_left(nums, CD{7, 0}, std::multiplies {}); // (2)
 #endif
 std::cout << "res: " << res << '\n';
}

Output:

sum: 36
mul: 40320
sec: 42
str: A:1:2:3:4:5:6:7:8
res: (42,42)

[edit] References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

[edit] See also

left-folds a range of elements using the first element as an initial value
(algorithm function object)[edit]
right-folds a range of elements
(algorithm function object)[edit]
right-folds a range of elements using the last element as an initial value
(algorithm function object)[edit]
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)[edit]
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)
(algorithm function object)[edit]
sums up or folds a range of elements
(function template) [edit]
(C++17)
similar to std::accumulate , except out of order
(function template) [edit]

AltStyle によって変換されたページ (->オリジナル) /