cexpf, cexp, cexpl
From cppreference.com
C
Concurrency support (C11)
Complex number arithmetic
Types and the imaginary constant
Manipulation
Power and exponential functions
Trigonometric functions
Hyperbolic functions
Defined in header
<complex.h>
Defined in header
<tgmath.h>
#define exp( z )
(4)
(since C99)
1-3) Computes the complex base-e exponential of
z
.4) Type-generic macro: If
z
has type long double complex , cexpl
is called. if z
has type double complex , cexp
is called, if z
has type float complex , cexpf
is called. If z
is real or integer, then the macro invokes the corresponding real function (expf, exp , expl). If z
is imaginary, the corresponding complex argument version is called.Contents
[edit] Parameters
z
-
complex argument
[edit] Return value
If no errors occur, e raised to the power of z
, \(\small e^z\)ez
is returned.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- cexp(conj (z)) == conj (cexp(z))
- If
z
is±0+0i
, the result is1+0i
- If
z
isx+∞i
(for any finite x), the result isNaN+NaNi
and FE_INVALID is raised. - If
z
isx+NaNi
(for any finite x), the result isNaN+NaNi
and FE_INVALID may be raised. - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is-∞+yi
(for any finite y), the result is+0cis(y)
- If
z
is+∞+yi
(for any finite nonzero y), the result is+∞cis(y)
- If
z
is-∞+∞i
, the result is±0±0i
(signs are unspecified) - If
z
is+∞+∞i
, the result is±∞+NaNi
and FE_INVALID is raised (the sign of the real part is unspecified) - If
z
is-∞+NaNi
, the result is±0±0i
(signs are unspecified) - If
z
is+∞+NaNi
, the result is±∞+NaNi
(the sign of the real part is unspecified) - If
z
isNaN+0i
, the result isNaN+0i
- If
z
isNaN+yi
(for any nonzero y), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where \(\small{\rm cis}(y)\)cis(y) is \(\small \cos(y)+{\rm i}\sin(y)\)cos(y) + i sin(y)
[edit] Notes
The complex exponential function \(\small e^z\)ez
for \(\small z = x + {\rm i}y\)z = x+iy equals \(\small e^x {\rm cis}(y)\)ex
cis(y), or, \(\small e^x (\cos(y)+{\rm i}\sin(y))\)ex
(cos(y) + i sin(y))
The exponential function is an entire function in the complex plane and has no branch cuts.
[edit] Example
Run this code
Output:
exp(i*pi) = -1.0+0.0i
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.7.1 The cexp functions (p: 194)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.3.1 The cexp functions (p: 543)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.7.1 The cexp functions (p: 176)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.3.1 The cexp functions (p: 478)
- G.7 Type-generic math <tgmath.h> (p: 480)
[edit] See also
C++ documentation for exp