clogf, clog, clogl
From cppreference.com
C
Concurrency support (C11)
Complex number arithmetic
Types and the imaginary constant
Manipulation
Power and exponential functions
Trigonometric functions
Hyperbolic functions
Defined in header
<complex.h>
Defined in header
<tgmath.h>
#define log( z )
(4)
(since C99)
1-3) Computes the complex natural (base-e) logarithm of
z
with branch cut along the negative real axis.4) Type-generic macro: If
z
has type long double complex , clogl
is called. if z
has type double complex , clog
is called, if z
has type float complex , clogf
is called. If z
is real or integer, then the macro invokes the corresponding real function (logf, log , logl). If z
is imaginary, the corresponding complex number version is called.Contents
[edit] Parameters
z
-
complex argument
[edit] Return value
If no errors occur, the complex natural logarithm of z
is returned, in the range of a strip in the interval [−iπ, +iπ] along the imaginary axis and mathematically unbounded along the real axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- The function is continuous onto the branch cut taking into account the sign of imaginary part
- clog(conj (z)) == conj (clog(z))
- If
z
is-0+0i
, the result is-∞+πi
and FE_DIVBYZERO is raised - If
z
is+0+0i
, the result is-∞+0i
and FE_DIVBYZERO is raised - If
z
isx+∞i
(for any finite x), the result is+∞+πi/2
- If
z
isx+NaNi
(for any finite x), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
is-∞+yi
(for any finite positive y), the result is+∞+πi
- If
z
is+∞+yi
(for any finite positive y), the result is+∞+0i
- If
z
is-∞+∞i
, the result is+∞+3πi/4
- If
z
is+∞+∞i
, the result is+∞+πi/4
- If
z
is±∞+NaNi
, the result is+∞+NaNi
- If
z
isNaN+yi
(for any finite y), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
isNaN+∞i
, the result is+∞+NaNi
- If
z
isNaN+NaNi
, the result isNaN+NaNi
[edit] Notes
The natural logarithm of a complex number z with polar coordinate components (r,θ) equals ln r + i(θ+2nπ), with the principal value ln r + iθ
[edit] Example
Run this code
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = clog(I); // r = 1, θ = pi/2 printf ("2*log(i) = %.1f%+fi\n", creal (2*z), cimag (2*z)); double complex z2 = clog(sqrt (2)/2 + sqrt (2)/2*I); // r = 1, θ = pi/4 printf ("4*log(sqrt(2)/2+sqrt(2)i/2) = %.1f%+fi\n", creal (4*z2), cimag (4*z2)); double complex z3 = clog(-1); // r = 1, θ = pi printf ("log(-1+0i) = %.1f%+fi\n", creal (z3), cimag (z3)); double complex z4 = clog(conj (-1)); // or clog(CMPLX(-1, -0.0)) in C11 printf ("log(-1-0i) (the other side of the cut) = %.1f%+fi\n", creal (z4), cimag (z4)); }
Output:
2*log(i) = 0.0+3.141593i 4*log(sqrt(2)/2+sqrt(2)i/2) = 0.0+3.141593i log(-1+0i) = 0.0+3.141593i log(-1-0i) (the other side of the cut) = 0.0-3.141593i
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.7.2 The clog functions (p: 195)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.3.2 The clog functions (p: 543-544)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.7.2 The clog functions (p: 176-177)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.3.2 The clog functions (p: 478-479)
- G.7 Type-generic math <tgmath.h> (p: 480)
[edit] See also
C++ documentation for log