Satz von Grauert und Röhrl
aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen
Zur Suche springen
In der Mathematik ist der Satz von Grauert und Röhrl ein Lehrsatz der Funktionentheorie. Er besagt, dass jedes holomorphe Vektorbündel über einer offenen Riemannschen Fläche trivialisierbar ist. Benannt ist er nach Hans Grauert und Helmut Röhrl, die ihn 1956 bewiesen.
Literatur
[Bearbeiten | Quelltext bearbeiten ]- H. Röhrl: Holomorphic fiber bundles over Riemann surfaces. Bull. Am. Math. Soc. 68, 125–160 (1962).
- H. Grauert, R. Remmert: Theory of Stein spaces. Grundlehren der Mathematischen Wissenschaften 236, Springer-Verlag Berlin-New York (1979).