Gabor-Transformation

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Gabor-Transformation (nach Dennis Gábor) ist eine spezielle (und in bestimmter Weise optimale) gefensterte Fourier-Transformation. Sie ist eng verwandt mit der Wavelet-Theorie und wird in vielen Bereichen der digitalen Signal- und Bildverarbeitung eingesetzt. Sie ist ein Spezialfall der Kurzzeit-Fourier-Transformation.

Zweidimensionales Gabor-Wavelet

Jede lokale Veränderung eines Signals f {\displaystyle f} {\displaystyle f} bewirkt eine Änderung der Fourier-Transformierten (FT) von f {\displaystyle f} {\displaystyle f} über der gesamten Frequenzachse. So überdeckt zum Beispiel der Graph der FT der Delta-Distribution (Dirac-Funktion) den gesamten Frequenzbereich. Die FT enthält daher keine lokalen Informationen des Signals f {\displaystyle f} {\displaystyle f}. Dies bedeutet andererseits, dass die Information des Frequenzspektrums den Zeitpunkt, in dem die Frequenz auftritt, nicht unmittelbar angibt. Eine Möglichkeit der Lokalisierung in der Zeit bietet die Kurzzeit-Fourier-Transformation (englisch short-time Fourier transform, kurz STFT), mit der der momentane Frequenzinhalt in einem Fenster g {\displaystyle g} {\displaystyle g} um den Punkt τ {\displaystyle \tau } {\displaystyle \tau } beschrieben werden kann. Dabei wird für g {\displaystyle g} {\displaystyle g} üblicherweise eine schnell auf 0 abfallende Funktion gewählt, damit sie als Fenster wirkt.


F F e n ( ω , τ ) = + f ( t ) g ( t τ ) e i ω t d t {\displaystyle F^{\mathrm {Fen} }(\omega ,\tau )=\int \limits _{-\infty }^{+\infty }f(t)g(t-\tau )e^{-\mathrm {i} \omega t}\mathrm {d} t} {\displaystyle F^{\mathrm {Fen} }(\omega ,\tau )=\int \limits _{-\infty }^{+\infty }f(t)g(t-\tau )e^{-\mathrm {i} \omega t}\mathrm {d} t}

Die Fourier-Transformierte mit Fenster ist somit von zwei Parametern abhängig, der Frequenz ω {\displaystyle \omega } {\displaystyle \omega } und dem Zentrum der Lokalisierung τ {\displaystyle \tau } {\displaystyle \tau }. Man spricht deshalb auch von einer Darstellung im Zeit-/Frequenzbereich.

Die STFT mit einer Gauß-Funktion g σ ( t ) {\displaystyle g_{\sigma }(t)} {\displaystyle g_{\sigma }(t)} als Fensterfunktion wurde von Dennis Gábor 1946 verwendet:

g σ ( t ) = 1 σ 2 π e t 2 2 σ 2 {\displaystyle g_{\sigma }(t)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {t^{2}}{2\sigma ^{2}}}}} {\displaystyle g_{\sigma }(t)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {t^{2}}{2\sigma ^{2}}}}}

Diese spezielle STFT heißt Gabor-Transformation. Bezeichnet man das Ergebnis der Gabortransformation von f {\displaystyle f} {\displaystyle f} mit G f {\displaystyle G_{f}} {\displaystyle G_{f}} so ergibt wegen der Symmetrie von g σ {\displaystyle g_{\sigma }} {\displaystyle g_{\sigma }}

G f ( ω , τ ) = + f ( t ) g σ ( t τ ) e i ω t d t = e i ω τ + f ( t ) g σ ( τ t ) e i ω ( τ t ) d t = e i ω τ ( f ( τ ) ( g σ ( τ ) e i ω τ ) ) = e i ω τ ( f ( τ ) h ( τ ) ) {\displaystyle {\begin{aligned}G_{f}(\omega ,\tau )&=\int \limits _{-\infty }^{+\infty }f(t)g_{\sigma }(t-\tau )e^{-\mathrm {i} \omega t}\mathrm {d} t\\&=e^{-\mathrm {i} \omega \tau }\int \limits _{-\infty }^{+\infty }f(t)g_{\sigma }(\tau -t)e^{\mathrm {i} \omega (\tau -t)}\mathrm {d} t\\&=e^{-\mathrm {i} \omega \tau }(f(\tau )\ast (g_{\sigma }(\tau )e^{\mathrm {i} \omega \tau }))\\&=e^{-\mathrm {i} \omega \tau }(f(\tau )\ast h(\tau ))\end{aligned}}} {\displaystyle {\begin{aligned}G_{f}(\omega ,\tau )&=\int \limits _{-\infty }^{+\infty }f(t)g_{\sigma }(t-\tau )e^{-\mathrm {i} \omega t}\mathrm {d} t\\&=e^{-\mathrm {i} \omega \tau }\int \limits _{-\infty }^{+\infty }f(t)g_{\sigma }(\tau -t)e^{\mathrm {i} \omega (\tau -t)}\mathrm {d} t\\&=e^{-\mathrm {i} \omega \tau }(f(\tau )\ast (g_{\sigma }(\tau )e^{\mathrm {i} \omega \tau }))\\&=e^{-\mathrm {i} \omega \tau }(f(\tau )\ast h(\tau ))\end{aligned}}}

Im Zeitbereich stellt die Gaborfilterung daher bis auf den Faktor e i ω τ {\displaystyle e^{-\mathrm {i} \omega \tau }} {\displaystyle e^{-\mathrm {i} \omega \tau }} eine Faltung dar. Dieser Faktor bewirkt jedoch lediglich eine Phasenverschiebung und kann daher bei Anwendungen, die nur die Amplitude des Ergebnisses berücksichtigen, vernachlässigt werden (Siehe Gabor-Filter).

Da die Fouriertransformierte einer Gauß-Funktion wieder eine Gauß-Funktion ergibt, stellt das Ergebnis der Gabortransformation sowohl im Zeit- als auch im Frequenzraum lokale Information dar. Das Filter kann jede beliebige elliptische Region des Zeit- oder des Frequenzraums überdecken. Ferner erzielt die Gabortransformation – unabhängig von der Anordnung – maximale gleichzeitige Auflösung im Zeit- und Frequenzraum, das heißt die Gauß-Funktion erreicht als (einzige) Fensterfunktion das Minimum der Unschärferelation σ g 2 σ G 2 π 2 {\displaystyle \sigma _{g}^{2}\cdot \sigma _{G}^{2}\geq {\tfrac {\pi }{2}}} {\displaystyle \sigma _{g}^{2}\cdot \sigma _{G}^{2}\geq {\tfrac {\pi }{2}}}, wobei σ g 2 {\displaystyle \sigma _{g}^{2}} {\displaystyle \sigma _{g}^{2}} die Varianz der Fensterfunktion im Zeitbereich (Zeitunschärfe) und σ G 2 {\displaystyle \sigma _{G}^{2}} {\displaystyle \sigma _{G}^{2}} entsprechend die im Frequenzraum (Frequenzunschärfe) angibt. Daraus ergibt sich direkt der reziproke Zusammenhang zwischen den Unschärfen und damit ein wichtiger trade-off. Das heißt, um die Auflösung im Zeitbereich zu verdoppeln, muss eine halbierte Auflösung im Frequenzraum in Kauf genommen werden, und umgekehrt.

  • Hans G. Feichtinger, Thomas Strohmer: „Gabor Analysis and Algorithms", Birkhäuser, 1998; ISBN 0817639594
  • Hans G. Feichtinger, Thomas Strohmer: „Advances in Gabor Analysis", Birkhäuser, 2003; ISBN 0817642390
  • Karlheinz Gröchenig: „Foundations of Time-Frequency Analysis", Birkhäuser, 2001; ISBN 0817640223
Abgerufen von „https://de.wikipedia.org/w/index.php?title=Gabor-Transformation&oldid=242308499"