Benutzer:AlexTheGer

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Dies ist eine Testseite, um Inhalte die in einem andern Wiki leider (noch) nicht realisierbarsind auszuprobieren.

Bitte nicht löschen, da hier viel Arbeit drin steckt!

P r : Ω [ 0 , 1 ] {\displaystyle Pr:\Omega \rightarrow [0,1]} {\displaystyle Pr:\Omega \rightarrow [0,1]}

a A P r ( a ) = 1 {\displaystyle \sum _{a\in A}Pr(a)=1} {\displaystyle \sum _{a\in A}Pr(a)=1}

A Ω {\displaystyle A\subseteq \Omega } {\displaystyle A\subseteq \Omega }

P r : P ( Ω ) [ 0 , 1 ] {\displaystyle Pr:{\mathcal {P}}(\Omega )\rightarrow [0,1]} {\displaystyle Pr:{\mathcal {P}}(\Omega )\rightarrow [0,1]}

P r ( A ) = a A P r ( a ) {\displaystyle Pr(A)=\sum _{a\in A}Pr(a)} {\displaystyle Pr(A)=\sum _{a\in A}Pr(a)}

P ( Ω ) = 2 Ω {\displaystyle P(\Omega )=2^{\Omega }} {\displaystyle P(\Omega )=2^{\Omega }}

1 6 {\displaystyle {\frac {1}{6}}} {\displaystyle {\frac {1}{6}}}

¬ {\displaystyle \neg } {\displaystyle \neg }

{\displaystyle \cup } {\displaystyle \cup } {\displaystyle \in } {\displaystyle \in }

{\displaystyle \cap } {\displaystyle \cap }

{\displaystyle \subseteq } {\displaystyle \subseteq }

{\displaystyle \varnothing } {\displaystyle \varnothing }

P r ( B ) = ( 5 3 ) 1 2 5 {\displaystyle Pr(B)={5 \choose 3}\cdot {\frac {1}{2^{5}}}} {\displaystyle Pr(B)={5 \choose 3}\cdot {\frac {1}{2^{5}}}}

P r ( A ) = 5 6 k 1 1 6 = 5 k 1 6 k {\displaystyle Pr(A)={5 \over 6}^{k-1}\cdot {1 \over 6}={5^{k-1} \over 6^{k}}} {\displaystyle Pr(A)={5 \over 6}^{k-1}\cdot {1 \over 6}={5^{k-1} \over 6^{k}}}

A F A ¯ F {\displaystyle A\in {\mathcal {F}}\Rightarrow {\overline {A}}\in {\mathcal {F}}} {\displaystyle A\in {\mathcal {F}}\Rightarrow {\overline {A}}\in {\mathcal {F}}}

A 1 , A 2 , . . . F i = 1 A i F {\displaystyle A_{1},A_{2},...\in {\mathcal {F}}\Rightarrow \bigcup _{i=1}^{\infty }A_{i}\in {\mathcal {F}}} {\displaystyle A_{1},A_{2},...\in {\mathcal {F}}\Rightarrow \bigcup _{i=1}^{\infty }A_{i}\in {\mathcal {F}}}

A ¯ {\displaystyle {\overline {A}}} {\displaystyle {\overline {A}}}

A i F {\displaystyle A_{i}\in {\mathcal {F}}} {\displaystyle A_{i}\in {\mathcal {F}}}

P r ( i = 1 A i ) = i = 1 P r ( A i ) {\displaystyle Pr\left(\bigcup _{i=1}^{\infty }A_{i}\right)=\sum _{i=1}^{\infty }Pr(A_{i})} {\displaystyle Pr\left(\bigcup _{i=1}^{\infty }A_{i}\right)=\sum _{i=1}^{\infty }Pr(A_{i})}

F P ( Ω ) {\displaystyle {\mathcal {F}}\subseteq P(\Omega )} {\displaystyle {\mathcal {F}}\subseteq P(\Omega )}

P r ( A | B ) = P r ( A B ) P r ( B ) {\displaystyle Pr(A|B)={\frac {Pr(A\cap B)}{Pr(B)}}} {\displaystyle Pr(A|B)={\frac {Pr(A\cap B)}{Pr(B)}}}

P r ( A ) = i P r ( A | B i ) P r ( B i ) {\displaystyle Pr(A)=\sum _{i}Pr(A|B_{i})\cdot Pr(B_{i})} {\displaystyle Pr(A)=\sum _{i}Pr(A|B_{i})\cdot Pr(B_{i})}

E ( X ) = w Ω X ( w ) P r ( w ) {\displaystyle E(X)=\sum _{w\in \Omega }X(w)\cdot Pr({w})} {\displaystyle E(X)=\sum _{w\in \Omega }X(w)\cdot Pr({w})}

I m X = { x R | a Ω X ( a ) = x } {\displaystyle ImX=\{x\in R|\exists a\in \Omega \quad X(a)=x\}} {\displaystyle ImX=\{x\in R|\exists a\in \Omega \quad X(a)=x\}}

x R X 1 ( x ) = { a Ω | x ( a ) = x } F {\displaystyle \forall x\in R\quad X^{-1}(x)=\{a\in \Omega |x(a)=x\}\in {\mathcal {F}}} {\displaystyle \forall x\in R\quad X^{-1}(x)=\{a\in \Omega |x(a)=x\}\in {\mathcal {F}}}

E ( X ) = x I m ( X ) x P r ( X 1 ( x ) ) {\displaystyle E(X)=\sum _{x\in Im(X)}x\cdot Pr(X^{-1}(x))} {\displaystyle E(X)=\sum _{x\in Im(X)}x\cdot Pr(X^{-1}(x))}

X 1 ( T ) F {\displaystyle X^{-1}(T)\in {\mathcal {F}}} {\displaystyle X^{-1}(T)\in {\mathcal {F}}}

X 1 ( T ) = x ( T I m X ) X 1 ( T ) {\displaystyle X^{-1}(T)=\bigcup _{x\in (T\cap ImX)}X^{-1}(T)} {\displaystyle X^{-1}(T)=\bigcup _{x\in (T\cap ImX)}X^{-1}(T)}

P r ( X 1 ( x ) ) = P r X ( x ) = P r ( X = x )   {\displaystyle Pr(X^{-1}(x))=Pr_{X}(x)=Pr(X=x)\ } {\displaystyle Pr(X^{-1}(x))=Pr_{X}(x)=Pr(X=x)\ }

P r X ( k ) = ( n k ) p k q n k {\displaystyle Pr_{X}(k)={n \choose k}\cdot p^{k}\cdot q^{n-k}} {\displaystyle Pr_{X}(k)={n \choose k}\cdot p^{k}\cdot q^{n-k}} k { 0 , 1 , . . . , n } {\displaystyle k\in \{0,1,...,n\}} {\displaystyle k\in \{0,1,...,n\}}

P r X ( k ) = p q k 1 {\displaystyle Pr_{X}(k)=p\cdot q^{k-1}} {\displaystyle Pr_{X}(k)=p\cdot q^{k-1}} k N + {\displaystyle k\in \mathbb {N} ^{+}} {\displaystyle k\in \mathbb {N} ^{+}}

N + {\displaystyle \mathbb {N} ^{+}} {\displaystyle \mathbb {N} ^{+}}

1 6 ( 5 6 ) n 1 {\displaystyle {\frac {1}{6}}\left({\frac {5}{6}}\right)^{n-1}} {\displaystyle {\frac {1}{6}}\left({\frac {5}{6}}\right)^{n-1}}

P r X ( k ) = 1 k ! λ k e λ {\displaystyle Pr_{X}(k)={\frac {1}{k!}}\lambda ^{k}e^{-\lambda }} {\displaystyle Pr_{X}(k)={\frac {1}{k!}}\lambda ^{k}e^{-\lambda }}

{ a Ω | X ( a ) x } F {\displaystyle \{a\in \Omega |X(a)\leq x\}\in {\mathcal {F}}} {\displaystyle \{a\in \Omega |X(a)\leq x\}\in {\mathcal {F}}}

F X ( x ) = P r ( { a Ω | X ( a ) x } ) = P r ( X x ) {\displaystyle F_{X}(x)=Pr(\{a\in \Omega |X(a)\leq x\})=Pr(X\leq x)} {\displaystyle F_{X}(x)=Pr(\{a\in \Omega |X(a)\leq x\})=Pr(X\leq x)}

F X ( x ) = y x P r X ( y ) {\displaystyle F_{X}(x)=\sum _{y\leq x}Pr_{X}(y)} {\displaystyle F_{X}(x)=\sum _{y\leq x}Pr_{X}(y)}

x y F ( x ) F ( y ) {\displaystyle x\leq y\Rightarrow F(x)\leq F(y)} {\displaystyle x\leq y\Rightarrow F(x)\leq F(y)}

lim x F ( x ) = 0 {\displaystyle \lim _{x\to -\infty }F(x)=0} {\displaystyle \lim _{x\to -\infty }F(x)=0} lim x F ( x ) = 1 {\displaystyle \lim _{x\to \infty }F(x)=1} {\displaystyle \lim _{x\to \infty }F(x)=1}

x R lim h 0 + F ( x + h ) = F ( x ) {\displaystyle \forall x\in \mathbb {R} \lim _{h\to 0+}F(x+h)=F(x)} {\displaystyle \forall x\in \mathbb {R} \lim _{h\to 0+}F(x+h)=F(x)}

F X ( x ) = x f ( t ) d t {\displaystyle F_{X}(x)=\int _{-\infty }^{x}f(t)\mathrm {d} t} {\displaystyle F_{X}(x)=\int _{-\infty }^{x}f(t)\mathrm {d} t}

E ( X ) = x I m X x P r X ( x ) = x I m x x P r ( { a Ω | X ( a ) = x } ) {\displaystyle E(X)=\sum _{x\in \mathrm {Im} X}x\cdot Pr_{X}(x)=\sum _{x\in \mathrm {Im} x}x\cdot Pr(\{a\in \Omega |X(a)=x\})} {\displaystyle E(X)=\sum _{x\in \mathrm {Im} X}x\cdot Pr_{X}(x)=\sum _{x\in \mathrm {Im} x}x\cdot Pr(\{a\in \Omega |X(a)=x\})}

E ( X ) = x f ( x ) d x {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x} {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x}

X = X 1 + X 2 + X 3 + . . . + X n   {\displaystyle X=X_{1}+X_{2}+X_{3}+...+X_{n}\ } {\displaystyle X=X_{1}+X_{2}+X_{3}+...+X_{n}\ }

E ( X ) = E ( X 1 ) + E ( X 2 ) + E ( X 3 ) + . . . + E ( X n ) = n p {\displaystyle E(X)=E(X_{1})+E(X_{2})+E(X_{3})+...+E(X_{n})=n\cdot p} {\displaystyle E(X)=E(X_{1})+E(X_{2})+E(X_{3})+...+E(X_{n})=n\cdot p}

P r X ( k ) = ( e p ) k 1 p = q k 1 p {\displaystyle Pr_{X}(k)=(e-p)^{k-1}\cdot p=q^{k-1}\cdot p} {\displaystyle Pr_{X}(k)=(e-p)^{k-1}\cdot p=q^{k-1}\cdot p}

E ( X ) = k = 1 k q k 1 p = . . . = 1 1 1 q = 1 p {\displaystyle E(X)=\sum _{k=1}^{\infty }k\cdot q^{k-1}\cdot p=...=1\cdot {\frac {1}{1-q}}={\frac {1}{p}}} {\displaystyle E(X)=\sum _{k=1}^{\infty }k\cdot q^{k-1}\cdot p=...=1\cdot {\frac {1}{1-q}}={\frac {1}{p}}}

E ( X ) = k = 0 k 1 k ! λ k e λ = . . . = λ e λ e λ = λ {\displaystyle E(X)=\sum _{k=0}^{\infty }k\cdot {\frac {1}{k!}}\cdot \lambda ^{k}\cdot e^{-\lambda }=...=\lambda \cdot e^{\lambda }\cdot e^{-\lambda }=\lambda } {\displaystyle E(X)=\sum _{k=0}^{\infty }k\cdot {\frac {1}{k!}}\cdot \lambda ^{k}\cdot e^{-\lambda }=...=\lambda \cdot e^{\lambda }\cdot e^{-\lambda }=\lambda }

1 b a {\displaystyle {\frac {1}{b-a}}} {\displaystyle {\frac {1}{b-a}}}

E ( X ) = x f ( x ) d x = a b x 1 b a d x = . . . = a + b 2 {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x=\int _{a}^{b}x\cdot {\frac {1}{b-a}}\mathrm {d} x=...={\frac {a+b}{2}}} {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x=\int _{a}^{b}x\cdot {\frac {1}{b-a}}\mathrm {d} x=...={\frac {a+b}{2}}}

X : Ω R 0 {\displaystyle X:\Omega \rightarrow \mathbb {R} ^{\geq 0}} {\displaystyle X:\Omega \rightarrow \mathbb {R} ^{\geq 0}}

P r ( X t ) E ( X ) t {\displaystyle Pr(X\geq t)\leq {\frac {E(X)}{t}}} {\displaystyle Pr(X\geq t)\leq {\frac {E(X)}{t}}} P r ( X α E ( X ) ) 1 α {\displaystyle Pr(X\geq \alpha E(X))\leq {\frac {1}{\alpha }}} {\displaystyle Pr(X\geq \alpha E(X))\leq {\frac {1}{\alpha }}}

t = 2 , 0 m P r ( X 2 , 0 ) E ( X ) t = 1 , 7 2 , 0 = 0 , 85 {\displaystyle t=2{,}0m\quad Pr(X\geq 2{,}0)\leq {\frac {E(X)}{t}}={\frac {1{,}7}{2{,}0}}=0{,}85} {\displaystyle t=2{,}0m\quad Pr(X\geq 2{,}0)\leq {\frac {E(X)}{t}}={\frac {1{,}7}{2{,}0}}=0{,}85}

t = 0 , 5 m P r ( Y 0 , 5 ) 0 , 2 0 , 5 = 0 , 4 {\displaystyle t=0{,}5m\quad Pr(Y\geq 0{,}5)\leq {\frac {0{,}2}{0{,}5}}=0{,}4} {\displaystyle t=0{,}5m\quad Pr(Y\geq 0{,}5)\leq {\frac {0{,}2}{0{,}5}}=0{,}4}

E ( X 2 ) = x I m X x 2 P r ( X = x ) {\displaystyle E(X^{2})=\sum _{x\in ImX}x^{2}\cdot Pr(X=x)} {\displaystyle E(X^{2})=\sum _{x\in ImX}x^{2}\cdot Pr(X=x)}

E ( X ) = x f X ( x ) d x {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f_{X}(x)\mathrm {d} x} {\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f_{X}(x)\mathrm {d} x}

E ( Y ) = y f Y ( y ) d y = x f Y ( x ) d x {\displaystyle E(Y)=\int _{-\infty }^{\infty }y\cdot f_{Y}(y)\mathrm {d} y=\int _{-\infty }^{\infty }x\cdot f_{Y}(x)\mathrm {d} x} {\displaystyle E(Y)=\int _{-\infty }^{\infty }y\cdot f_{Y}(y)\mathrm {d} y=\int _{-\infty }^{\infty }x\cdot f_{Y}(x)\mathrm {d} x}

E ( g X ) = g ( x ) f ( x ) d x {\displaystyle E(gX)=\int _{-\infty }^{\infty }g(x)\cdot f(x)\mathrm {d} x} {\displaystyle E(gX)=\int _{-\infty }^{\infty }g(x)\cdot f(x)\mathrm {d} x} E ( X 2 ) = x 2 f ( x ) d x {\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x} {\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x}

V a r ( X ) = E ( ( X E ( X ) ) 2   {\displaystyle Var(X)=E((X-E(X))^{2}\ } {\displaystyle Var(X)=E((X-E(X))^{2}\ } σ = V a r ( X ) {\displaystyle \sigma ={\sqrt {Var(X)}}} {\displaystyle \sigma ={\sqrt {Var(X)}}}

E ( ( X E ( X ) ) 2 ) = E ( X 2 2 E ( X ) X + ( E ( X ) ) 2 ) = E ( X 2 ) 2 E ( X ) E ( X ) + ( E ( X ) ) 2 = E ( X 2 ) ( E ( X ) ) 2 {\displaystyle E((X-E(X))^{2})=E(X^{2}-2\cdot E(X)\cdot X+(E(X))^{2})=E(X^{2})-2\cdot E(X)\cdot E(X)+(E(X))^{2}=E(X^{2})-(E(X))^{2}} {\displaystyle E((X-E(X))^{2})=E(X^{2}-2\cdot E(X)\cdot X+(E(X))^{2})=E(X^{2})-2\cdot E(X)\cdot E(X)+(E(X))^{2}=E(X^{2})-(E(X))^{2}}

E ( X 2 ) = k = 1 k 2 q k 1 p = . . . = 2 p p 2 {\displaystyle E(X^{2})=\sum _{k=1}^{\infty }k^{2}\cdot q^{k-1}\cdot p=...={\frac {2-p}{p^{2}}}} {\displaystyle E(X^{2})=\sum _{k=1}^{\infty }k^{2}\cdot q^{k-1}\cdot p=...={\frac {2-p}{p^{2}}}} V a r ( X ) = E ( X 2 ) ( E ( X ) ) 2 = 2 p p 2 1 p 2 = 1 p p 2 = q p 2 {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}} {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}

V a r ( X ) = E ( X 2 ) ( E ( X ) ) 2 = . . . = p q {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...=p\cdot q} {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...=p\cdot q}

V a r ( X ) = E ( X 2 ) ( E ( X ) ) 2 = 2 p p 2 1 p 2 = 1 p p 2 = q p 2 {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}} {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}

E ( X ) = a + b 2 {\displaystyle E(X)={\frac {a+b}{2}}} {\displaystyle E(X)={\frac {a+b}{2}}}

E ( X 2 ) = x 2 f ( x ) d x = . . . = b 2 + a b + a 2 3 {\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x=...={\frac {b^{2}+a\cdot b+a^{2}}{3}}} {\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x=...={\frac {b^{2}+a\cdot b+a^{2}}{3}}} V a r ( X ) = E ( X 2 ) ( E ( X ) ) 2 = . . . = ( b a ) 2 12 {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...={\frac {(b-a)^{2}}{12}}} {\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...={\frac {(b-a)^{2}}{12}}}

E ( X ) = ( 1 p ) 0 + p 1 = p {\displaystyle E(X)=(1-p)\cdot 0+p\cdot 1=p} {\displaystyle E(X)=(1-p)\cdot 0+p\cdot 1=p}

{\displaystyle \geq } {\displaystyle \geq } {\displaystyle \leq } {\displaystyle \leq }

( a n ) n N {\displaystyle (a_{n})_{n\in N}} {\displaystyle (a_{n})_{n\in N}} ϵ > 0   n 0 N   n n 0   | a n a | < ϵ {\displaystyle \forall \epsilon >0\ \exists n_{0}\in N\ \forall n\geq n_{0}\ |a_{n}-a|<\epsilon } {\displaystyle \forall \epsilon >0\ \exists n_{0}\in N\ \forall n\geq n_{0}\ |a_{n}-a|<\epsilon }

lim n a n = a = l i m a n {\displaystyle \lim _{n\to \infty }a_{n}=a=lim\;a_{n}} {\displaystyle \lim _{n\to \infty }a_{n}=a=lim\;a_{n}} a n n a a n a {\displaystyle a_{n}{\overrightarrow {n\to \infty }}a\quad a_{n}\rightarrow a} {\displaystyle a_{n}{\overrightarrow {n\to \infty }}a\quad a_{n}\rightarrow a}

f ( x 0 ) = lim x x 0 f ( x ) {\displaystyle f(x_{0})=\lim _{x\to x_{0}}f(x)} {\displaystyle f(x_{0})=\lim _{x\to x_{0}}f(x)}

ϵ > 0 δ > 0 x | x x 0 | < δ | f ( x ) f ( x 0 ) | < δ {\displaystyle \forall \epsilon >0\quad \exists \delta >0\quad \forall x\quad |x-x_{0}|<\delta \Rightarrow |f(x)-f(x_{0})|<\delta } {\displaystyle \forall \epsilon >0\quad \exists \delta >0\quad \forall x\quad |x-x_{0}|<\delta \Rightarrow |f(x)-f(x_{0})|<\delta }

z w = x u + y v u 2 + v 2 + i y u x v u 2 + v 2 {\displaystyle {\frac {z}{w}}={\frac {xu+yv}{u^{2}+v^{2}}}+i*{\frac {yu-xv}{u^{2}+v^{2}}}} {\displaystyle {\frac {z}{w}}={\frac {xu+yv}{u^{2}+v^{2}}}+i*{\frac {yu-xv}{u^{2}+v^{2}}}}

| z | = x 2 + y 2 = z z ¯ {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}={\sqrt {z\cdot {\overline {z}}}}} {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}={\sqrt {z\cdot {\overline {z}}}}}

| z | = x 2 + y 2 {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}} {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}}

a r g z = { a r c c o s x | z | , falls  y 0 a r c c o s x | z | , falls  y < 0 {\displaystyle argz={\begin{cases}arccos{\frac {x}{|z|}},{\mbox{falls }}y\geq 0\\-arccos{\frac {x}{|z|}},{\mbox{falls }}y<0\end{cases}}} {\displaystyle argz={\begin{cases}arccos{\frac {x}{|z|}},{\mbox{falls }}y\geq 0\\-arccos{\frac {x}{|z|}},{\mbox{falls }}y<0\end{cases}}}

e i ζ = c o s ζ + i s i n ζ {\displaystyle e^{i\cdot \zeta }=cos\zeta +i\cdot sin\zeta } {\displaystyle e^{i\cdot \zeta }=cos\zeta +i\cdot sin\zeta }

e z = e x + i y = e x e i y = e x ( c o s y + i s i n y ) {\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}=e^{x}(cosy+i\cdot siny)} {\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}=e^{x}(cosy+i\cdot siny)}

| z | = e x {\displaystyle |z|=e^{x}\quad } {\displaystyle |z|=e^{x}\quad } a r g z = y ± 2 k π ( π , π ] {\displaystyle argz=y\pm 2k\pi \in (-\pi ,\pi ]} {\displaystyle argz=y\pm 2k\pi \in (-\pi ,\pi ]}

  1. e i ( ζ + ψ ) = e i ζ e i ψ {\displaystyle e^{i(\zeta +\psi )}=e^{i\zeta }\cdot e^{i\psi }} {\displaystyle e^{i(\zeta +\psi )}=e^{i\zeta }\cdot e^{i\psi }}
  2. e i n ζ = ( e i ζ ) n {\displaystyle e^{i\cdot n\zeta }=(e^{i\zeta })^{n}} {\displaystyle e^{i\cdot n\zeta }=(e^{i\zeta })^{n}}
  3. e i ζ ¯ = e i ( ζ ) = 1 e i ζ {\displaystyle {\overline {e^{i\cdot \zeta }}}=e^{i(-\zeta )}={\frac {1}{e^{i\zeta }}}} {\displaystyle {\overline {e^{i\cdot \zeta }}}=e^{i(-\zeta )}={\frac {1}{e^{i\zeta }}}}

z C  beliebig  z = r e i ζ ( r = | z |  und  ζ = a r g z ) {\displaystyle z\in C{\mbox{ beliebig }}z=r\cdot e^{i\cdot \zeta }\quad (r=|z|{\mbox{ und }}\zeta =argz)} {\displaystyle z\in C{\mbox{ beliebig }}z=r\cdot e^{i\cdot \zeta }\quad (r=|z|{\mbox{ und }}\zeta =argz)}

z k = { r k e i ζ k , r k e i ζ + 2 π k , r k e i ζ + 2 2 π k , . . . , r k e i ζ + ( k 1 ) 2 π k } {\displaystyle {\sqrt[{k}]{z}}={\begin{Bmatrix}{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\pi }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\cdot 2\pi }{k}}},...,{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +(k-1)\cdot 2\pi }{k}}}\end{Bmatrix}}} {\displaystyle {\sqrt[{k}]{z}}={\begin{Bmatrix}{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\pi }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\cdot 2\pi }{k}}},...,{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +(k-1)\cdot 2\pi }{k}}}\end{Bmatrix}}}


kgV ( p ( x ) , q ( x ) ) = p ( x ) q ( x ) ggT ( p ( x ) , q ( x ) ) {\displaystyle {\mbox{kgV}}(p(x),q(x))={\frac {p(x)\cdot q(x)}{{\mbox{ggT}}(p(x),q(x))}}} {\displaystyle {\mbox{kgV}}(p(x),q(x))={\frac {p(x)\cdot q(x)}{{\mbox{ggT}}(p(x),q(x))}}}

p ( x ) = j = 0 n y j p j ( x ) {\displaystyle p(x)=\sum _{j=0}^{n}{y_{j}\cdot p_{j}(x)}} {\displaystyle p(x)=\sum _{j=0}^{n}{y_{j}\cdot p_{j}(x)}}

p j ( x ) = i { 0 , . . . , n } { j } x x i x j x i {\displaystyle p_{j}(x)=\prod _{i\in {\begin{Bmatrix}0,...,n\end{Bmatrix}}\setminus {\begin{Bmatrix}j\end{Bmatrix}}}{\frac {x-x_{i}}{x_{j}-x_{i}}}} {\displaystyle p_{j}(x)=\prod _{i\in {\begin{Bmatrix}0,...,n\end{Bmatrix}}\setminus {\begin{Bmatrix}j\end{Bmatrix}}}{\frac {x-x_{i}}{x_{j}-x_{i}}}}

a n = y 0 , n {\displaystyle a_{n}=y_{0,n}\quad } {\displaystyle a_{n}=y_{0,n}\quad }

( a n ) n N {\displaystyle (a_{n})_{n\in N}} {\displaystyle (a_{n})_{n\in N}} ( b n ) n N {\displaystyle (b_{n})_{n\in N}} {\displaystyle (b_{n})_{n\in N}} ( c n ) n N {\displaystyle (c_{n})_{n\in N}} {\displaystyle (c_{n})_{n\in N}}

  1. lim n ( a n + b n ) = a + b {\displaystyle \lim _{n\to \infty }{(a_{n}+b_{n})}=a+b} {\displaystyle \lim _{n\to \infty }{(a_{n}+b_{n})}=a+b}
  2. lim n ( a n b n ) = a b {\displaystyle \lim _{n\to \infty }{(a_{n}\cdot b_{n})}=a\cdot b} {\displaystyle \lim _{n\to \infty }{(a_{n}\cdot b_{n})}=a\cdot b}
  3. lim n ( a n b n ) = a b  falls  b 0  und  b n 0  fuer alle  n N {\displaystyle \lim _{n\to \infty }{({\frac {a_{n}}{b_{n}}})}={\frac {a}{b}}{\mbox{ falls }}b\neq 0{\mbox{ und }}b_{n}\neq 0{\mbox{ fuer alle }}n\in N} {\displaystyle \lim _{n\to \infty }{({\frac {a_{n}}{b_{n}}})}={\frac {a}{b}}{\mbox{ falls }}b\neq 0{\mbox{ und }}b_{n}\neq 0{\mbox{ fuer alle }}n\in N}
  4. lim n | a n | = | a | {\displaystyle \lim _{n\to \infty }{|a_{n}|}=|a|} {\displaystyle \lim _{n\to \infty }{|a_{n}|}=|a|}
  5. lim n | a n | = | a | {\displaystyle \lim _{n\to \infty }{\sqrt {|a_{n}|}}={\sqrt {|a|}}} {\displaystyle \lim _{n\to \infty }{\sqrt {|a_{n}|}}={\sqrt {|a|}}}

a n b n c n {\displaystyle a_{n}\leq b_{n}\leq c_{n}} {\displaystyle a_{n}\leq b_{n}\leq c_{n}} n k {\displaystyle n\geq k} {\displaystyle n\geq k} lim n a n = lim n c n = c {\displaystyle \lim _{n\to \infty }{a_{n}}=\lim _{n\to \infty }{c_{n}}=c} {\displaystyle \lim _{n\to \infty }{a_{n}}=\lim _{n\to \infty }{c_{n}}=c} lim n b n = c {\displaystyle \lim _{n\to \infty }{b_{n}}=c} {\displaystyle \lim _{n\to \infty }{b_{n}}=c}

O ( g ( n ) ) = { f ( n )   |   c R +   n 0   n n 0 f ( n ) c g ( n ) } {\displaystyle {\mathcal {O}}(g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}} {\displaystyle {\mathcal {O}}(g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}}
Ω ( g ( n ) ) = { f ( n )   |   c R +   n 0   n n 0 f ( n ) c g ( n ) } {\displaystyle \Omega (g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}} {\displaystyle \Omega (g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}}
o ( g ( n ) ) = { f ( n )   |   c R +   n 0   n n 0 f ( n ) c g ( n ) } {\displaystyle o(g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}} {\displaystyle o(g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}}
ω ( g ( n ) ) = { f ( n )   |   c R +   n 0   n n 0 f ( n ) c g ( n ) } {\displaystyle \omega (g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}} {\displaystyle \omega (g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}}
Θ ( g ( n ) ) = O ( g ( n ) ) Ω ( g ( n ) ) {\displaystyle \Theta (g(n))={\mathcal {O}}(g(n))\cap \Omega (g(n))} {\displaystyle \Theta (g(n))={\mathcal {O}}(g(n))\cap \Omega (g(n))}

( f g ) ( x ) = f ( x ) g ( x ) f ( x ) g ( x ) ( g ( x ) ) 2  (fuer alle x mit  g ( x ) 0 ) {\displaystyle \left({\frac {f}{g}}\right)'(x)={\frac {f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^{2}}}\quad {\mbox{ (fuer alle x mit }}g(x)\neq 0{\mbox{)}}} {\displaystyle \left({\frac {f}{g}}\right)'(x)={\frac {f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^{2}}}\quad {\mbox{ (fuer alle x mit }}g(x)\neq 0{\mbox{)}}}

f ( x 0 ) = 0  und  { f ( x 0 ) > 0  Rechts nach Links f ( x 0 ) < 0  Links nach Rechts {\displaystyle f''(x_{0})=0{\mbox{ und }}{\begin{cases}f'''(x_{0})>0\quad {\mbox{ Rechts nach Links}}\\f'''(x_{0})<0\quad {\mbox{ Links nach Rechts}}\end{cases}}} {\displaystyle f''(x_{0})=0{\mbox{ und }}{\begin{cases}f'''(x_{0})>0\quad {\mbox{ Rechts nach Links}}\\f'''(x_{0})<0\quad {\mbox{ Links nach Rechts}}\end{cases}}}

lim x n f ( x ) = lim x n g ( x ) = 0 {\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=0} {\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=0} lim x n f ( x ) = lim x n g ( x ) = {\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=\infty } {\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=\infty } lim x n f ( x ) g ( x ) = lim x n f ( x ) g ( x ) = c {\displaystyle \lim _{x\to n}{\frac {f(x)}{g(x)}}=\lim _{x\to n}{\frac {f'(x)}{g'(x)}}=c} {\displaystyle \lim _{x\to n}{\frac {f(x)}{g(x)}}=\lim _{x\to n}{\frac {f'(x)}{g'(x)}}=c}

s i n h x = e x e x 2 {\displaystyle sinhx={\frac {e^{x}-e^{-x}}{2}}} {\displaystyle sinhx={\frac {e^{x}-e^{-x}}{2}}} c o s h x = e x + e x 2 {\displaystyle coshx={\frac {e^{x}+e^{-x}}{2}}} {\displaystyle coshx={\frac {e^{x}+e^{-x}}{2}}} s i n h x = e x ( 1 ) e x 2 = e 2 + e x 2 = c o s h x {\displaystyle sinh'x={\frac {e^{x}-(-1)\cdot e^{-x}}{2}}={\frac {e^{2}+e^{-x}}{2}}=coshx} {\displaystyle sinh'x={\frac {e^{x}-(-1)\cdot e^{-x}}{2}}={\frac {e^{2}+e^{-x}}{2}}=coshx} c o s h x = e x + ( 1 ) e x 2 = s i n h x {\displaystyle cosh'x={\frac {e^{x}+(-1)\cdot e^{-x}}{2}}=sinhx} {\displaystyle cosh'x={\frac {e^{x}+(-1)\cdot e^{-x}}{2}}=sinhx} t a n h x = s i n h x c o s h x = e x e x e x + e x {\displaystyle tanhx={\frac {sinhx}{coshx}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}} {\displaystyle tanhx={\frac {sinhx}{coshx}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}}

a f ( x ) + b g ( x ) d x = a f ( x ) d x + b g ( x ) d x {\displaystyle \int af(x)+bg(x)dx=a\int f(x)dx+b\int g(x)dx} {\displaystyle \int af(x)+bg(x)dx=a\int f(x)dx+b\int g(x)dx} d d x ( f ( x ) g ( x ) ) = f ( x ) g ( x ) + f ( x ) g ( x ) {\displaystyle {\frac {d}{dx}}(f(x)\cdot g(x))=f'(x)\cdot g(x)+f(x)\cdot g'(x)} {\displaystyle {\frac {d}{dx}}(f(x)\cdot g(x))=f'(x)\cdot g(x)+f(x)\cdot g'(x)} u ( x ) v ( x ) d x = u ( x ) v ( x ) u ( x ) v ( x ) d x {\displaystyle \int u'(x)\cdot v(x)dx=u(x)\cdot v(x)-\int u(x)\cdot v'(x)dx} {\displaystyle \int u'(x)\cdot v(x)dx=u(x)\cdot v(x)-\int u(x)\cdot v'(x)dx}

f ( g ( x ) ) g ( x ) d x = F ( g ( x ) ) + c {\displaystyle \int f(g(x))\cdot g'(x)dx=F(g(x))+c} {\displaystyle \int f(g(x))\cdot g'(x)dx=F(g(x))+c}

t = g ( x ) d t = g ( x ) d x {\displaystyle t=g(x)\qquad dt=g'(x)dx} {\displaystyle t=g(x)\qquad dt=g'(x)dx} F ( t ) = f ( t ) d t {\displaystyle F(t)=\int f(t)dt} {\displaystyle F(t)=\int f(t)dt} F ( g ( x ) ) {\displaystyle F(g(x))\quad } {\displaystyle F(g(x))\quad }

a b α f ( x ) + β g ( x ) d x = α a b f ( x ) d x + β a b g ( x ) d x {\displaystyle \int \limits _{a}^{b}\alpha f(x)+\beta g(x)dx=\alpha \int \limits _{a}^{b}f(x)dx+\beta \int \limits _{a}^{b}g(x)dx} {\displaystyle \int \limits _{a}^{b}\alpha f(x)+\beta g(x)dx=\alpha \int \limits _{a}^{b}f(x)dx+\beta \int \limits _{a}^{b}g(x)dx}

a b f ( x ) d x = a c f ( x ) d x + c b f ( x ) d x  fuer alle  a c b {\displaystyle \int \limits _{a}^{b}f(x)dx=\int \limits _{a}^{c}f(x)dx+\int \limits _{c}^{b}f(x)dx\quad {\mbox{ fuer alle }}a\leq c\leq b} {\displaystyle \int \limits _{a}^{b}f(x)dx=\int \limits _{a}^{c}f(x)dx+\int \limits _{c}^{b}f(x)dx\quad {\mbox{ fuer alle }}a\leq c\leq b}

f ( x ) g ( x )  fuer alle  x [ a , b ] => a b f ( x ) d ( x ) a b g ( x ) d x {\displaystyle f(x)\leq g(x){\mbox{ fuer alle }}x\in [a,b]=>\int \limits _{a}^{b}f(x)d(x)\leq \int _{a}^{b}g(x)dx} {\displaystyle f(x)\leq g(x){\mbox{ fuer alle }}x\in [a,b]=>\int \limits _{a}^{b}f(x)d(x)\leq \int _{a}^{b}g(x)dx}

a b f ( x ) d x = F ( b ) F ( a ) = F ( x ) a b {\displaystyle \int \limits _{a}^{b}f(x)dx=F(b)-F(a)=F(x)\mid _{a}^{b}} {\displaystyle \int \limits _{a}^{b}f(x)dx=F(b)-F(a)=F(x)\mid _{a}^{b}}

f : [ a , b ] > R {\displaystyle f:[a,b]->R\quad } {\displaystyle f:[a,b]->R\quad } A = a b | f ( x ) | d x {\displaystyle A=\int \limits _{a}^{b}|f(x)|dx} {\displaystyle A=\int \limits _{a}^{b}|f(x)|dx} A = a c 1 f ( x ) d x c 1 c 2 f ( x ) d x + c 2 b f ( x ) d x {\displaystyle A=\int \limits _{a}^{c1}f(x)dx-\int \limits _{c1}^{c2}f(x)dx+\int \limits _{c2}^{b}f(x)dx} {\displaystyle A=\int \limits _{a}^{c1}f(x)dx-\int \limits _{c1}^{c2}f(x)dx+\int \limits _{c2}^{b}f(x)dx}

A = a b | f ( x ) g ( x ) | d x {\displaystyle A=\int \limits _{a}^{b}|f(x)-g(x)|dx} {\displaystyle A=\int \limits _{a}^{b}|f(x)-g(x)|dx} A = a c 1 f ( x ) g ( x ) d x c 1 c 2 f ( x ) g ( x ) d x + c 2 b f ( x ) g ( x ) d x {\displaystyle A=\int \limits _{a}^{c1}f(x)-g(x)dx-\int \limits _{c1}^{c2}f(x)-g(x)dx+\int \limits _{c2}^{b}f(x)-g(x)dx} {\displaystyle A=\int \limits _{a}^{c1}f(x)-g(x)dx-\int \limits _{c1}^{c2}f(x)-g(x)dx+\int \limits _{c2}^{b}f(x)-g(x)dx}

a b a + ( f ( x ) ) 2   d x {\displaystyle \int \limits _{a}^{b}{\sqrt {a+(f'(x))^{2}}}\ dx} {\displaystyle \int \limits _{a}^{b}{\sqrt {a+(f'(x))^{2}}}\ dx}

V = π a b ( f ( x ) ) 2 d x {\displaystyle V=\pi \int \limits _{a}^{b}(f(x))^{2}dx} {\displaystyle V=\pi \int \limits _{a}^{b}(f(x))^{2}dx}

A = 2 π a b f ( x ) 1 + ( f ( x ) ) 2   d x {\displaystyle A=2\pi \int \limits _{a}^{b}f(x){\sqrt {1+(f'(x))^{2}}}\ dx} {\displaystyle A=2\pi \int \limits _{a}^{b}f(x){\sqrt {1+(f'(x))^{2}}}\ dx}

Gesucht:  f ( x ) d x {\displaystyle {\mbox{Gesucht: }}\int f(x)dx} {\displaystyle {\mbox{Gesucht: }}\int f(x)dx} x = g ( t )  umkehrbare Funktion  d x = g ( t ) d t {\displaystyle x=g(t){\mbox{ umkehrbare Funktion }}dx=g'(t)dt\quad } {\displaystyle x=g(t){\mbox{ umkehrbare Funktion }}dx=g'(t)dt\quad } f ( g ( t ) ) g ( t ) d t = H ( t ) + c {\displaystyle \int f(g(t))\cdot g'(t)dt=H(t)+c} {\displaystyle \int f(g(t))\cdot g'(t)dt=H(t)+c}

h ( x )  sei Umkehrfunktion von g  H ( h ( x ) ) = f ( x ) d x {\displaystyle h(x){\mbox{ sei Umkehrfunktion von g }}\quad H(h(x))=\int f(x)dx} {\displaystyle h(x){\mbox{ sei Umkehrfunktion von g }}\quad H(h(x))=\int f(x)dx}

1 x 2 1 x 2 d x = 1 x 2 d x {\displaystyle -\int {\frac {1-x^{2}}{\sqrt {1-x^{2}}}}dx=-\int {\sqrt {1-x^{2}}}dx} {\displaystyle -\int {\frac {1-x^{2}}{\sqrt {1-x^{2}}}}dx=-\int {\sqrt {1-x^{2}}}dx}

a r c s i n h x = l n ( x + x 2 + 1 ) {\displaystyle arcsinhx=ln(x+{\sqrt {x^{2}+1}})} {\displaystyle arcsinhx=ln(x+{\sqrt {x^{2}+1}})} a r c c o s h x = l n ( x + x 2 1 ) {\displaystyle arccoshx=ln(x+{\sqrt {x^{2}-1}})} {\displaystyle arccoshx=ln(x+{\sqrt {x^{2}-1}})} a r c s i n h x = 1 x 2 + 1 {\displaystyle arcsinh'x={\frac {1}{\sqrt {x^{2}+1}}}} {\displaystyle arcsinh'x={\frac {1}{\sqrt {x^{2}+1}}}} a r c c o s h x = 1 x 2 1 {\displaystyle arccosh'x={\frac {1}{\sqrt {x^{2}-1}}}} {\displaystyle arccosh'x={\frac {1}{\sqrt {x^{2}-1}}}}

a b 1 ( f ( x ) ) 2 d x {\displaystyle \int \limits _{a}^{b}{\sqrt {1-(f'(x))^{2}}}dx} {\displaystyle \int \limits _{a}^{b}{\sqrt {1-(f'(x))^{2}}}dx}

Abgerufen von „https://de.wikipedia.org/w/index.php?title=Benutzer:AlexTheGer&oldid=34493071"