Dies ist eine Testseite, um Inhalte die in einem andern Wiki leider (noch) nicht realisierbarsind auszuprobieren.
Bitte nicht löschen, da hier viel Arbeit drin steckt!
{\displaystyle Pr:\Omega \rightarrow [0,1]}
{\displaystyle \sum _{a\in A}Pr(a)=1}
{\displaystyle A\subseteq \Omega }
{\displaystyle Pr:{\mathcal {P}}(\Omega )\rightarrow [0,1]}
{\displaystyle Pr(A)=\sum _{a\in A}Pr(a)}
{\displaystyle P(\Omega )=2^{\Omega }}
{\displaystyle {\frac {1}{6}}}
{\displaystyle \neg }
{\displaystyle \cup } {\displaystyle \in }
{\displaystyle \cap }
{\displaystyle \subseteq }
{\displaystyle \varnothing }
{\displaystyle Pr(B)={5 \choose 3}\cdot {\frac {1}{2^{5}}}}
{\displaystyle Pr(A)={5 \over 6}^{k-1}\cdot {1 \over 6}={5^{k-1} \over 6^{k}}}
{\displaystyle A\in {\mathcal {F}}\Rightarrow {\overline {A}}\in {\mathcal {F}}}
{\displaystyle A_{1},A_{2},...\in {\mathcal {F}}\Rightarrow \bigcup _{i=1}^{\infty }A_{i}\in {\mathcal {F}}}
{\displaystyle {\overline {A}}}
{\displaystyle A_{i}\in {\mathcal {F}}}
{\displaystyle Pr\left(\bigcup _{i=1}^{\infty }A_{i}\right)=\sum _{i=1}^{\infty }Pr(A_{i})}
{\displaystyle {\mathcal {F}}\subseteq P(\Omega )}
{\displaystyle Pr(A|B)={\frac {Pr(A\cap B)}{Pr(B)}}}
{\displaystyle Pr(A)=\sum _{i}Pr(A|B_{i})\cdot Pr(B_{i})}
{\displaystyle E(X)=\sum _{w\in \Omega }X(w)\cdot Pr({w})}
{\displaystyle ImX=\{x\in R|\exists a\in \Omega \quad X(a)=x\}}
{\displaystyle \forall x\in R\quad X^{-1}(x)=\{a\in \Omega |x(a)=x\}\in {\mathcal {F}}}
{\displaystyle E(X)=\sum _{x\in Im(X)}x\cdot Pr(X^{-1}(x))}
{\displaystyle X^{-1}(T)\in {\mathcal {F}}}
{\displaystyle X^{-1}(T)=\bigcup _{x\in (T\cap ImX)}X^{-1}(T)}
{\displaystyle Pr(X^{-1}(x))=Pr_{X}(x)=Pr(X=x)\ }
{\displaystyle Pr_{X}(k)={n \choose k}\cdot p^{k}\cdot q^{n-k}}
{\displaystyle k\in \{0,1,...,n\}}
{\displaystyle Pr_{X}(k)=p\cdot q^{k-1}}
{\displaystyle k\in \mathbb {N} ^{+}}
{\displaystyle \mathbb {N} ^{+}}
{\displaystyle {\frac {1}{6}}\left({\frac {5}{6}}\right)^{n-1}}
{\displaystyle Pr_{X}(k)={\frac {1}{k!}}\lambda ^{k}e^{-\lambda }}
{\displaystyle \{a\in \Omega |X(a)\leq x\}\in {\mathcal {F}}}
{\displaystyle F_{X}(x)=Pr(\{a\in \Omega |X(a)\leq x\})=Pr(X\leq x)}
{\displaystyle F_{X}(x)=\sum _{y\leq x}Pr_{X}(y)}
{\displaystyle x\leq y\Rightarrow F(x)\leq F(y)}
{\displaystyle \lim _{x\to -\infty }F(x)=0} {\displaystyle \lim _{x\to \infty }F(x)=1}
{\displaystyle \forall x\in \mathbb {R} \lim _{h\to 0+}F(x+h)=F(x)}
{\displaystyle F_{X}(x)=\int _{-\infty }^{x}f(t)\mathrm {d} t}
{\displaystyle E(X)=\sum _{x\in \mathrm {Im} X}x\cdot Pr_{X}(x)=\sum _{x\in \mathrm {Im} x}x\cdot Pr(\{a\in \Omega |X(a)=x\})}
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x}
{\displaystyle X=X_{1}+X_{2}+X_{3}+...+X_{n}\ }
{\displaystyle E(X)=E(X_{1})+E(X_{2})+E(X_{3})+...+E(X_{n})=n\cdot p}
{\displaystyle Pr_{X}(k)=(e-p)^{k-1}\cdot p=q^{k-1}\cdot p}
{\displaystyle E(X)=\sum _{k=1}^{\infty }k\cdot q^{k-1}\cdot p=...=1\cdot {\frac {1}{1-q}}={\frac {1}{p}}}
{\displaystyle E(X)=\sum _{k=0}^{\infty }k\cdot {\frac {1}{k!}}\cdot \lambda ^{k}\cdot e^{-\lambda }=...=\lambda \cdot e^{\lambda }\cdot e^{-\lambda }=\lambda }
{\displaystyle {\frac {1}{b-a}}}
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x=\int _{a}^{b}x\cdot {\frac {1}{b-a}}\mathrm {d} x=...={\frac {a+b}{2}}}
{\displaystyle X:\Omega \rightarrow \mathbb {R} ^{\geq 0}}
{\displaystyle Pr(X\geq t)\leq {\frac {E(X)}{t}}} {\displaystyle Pr(X\geq \alpha E(X))\leq {\frac {1}{\alpha }}}
{\displaystyle t=2{,}0m\quad Pr(X\geq 2{,}0)\leq {\frac {E(X)}{t}}={\frac {1{,}7}{2{,}0}}=0{,}85}
{\displaystyle t=0{,}5m\quad Pr(Y\geq 0{,}5)\leq {\frac {0{,}2}{0{,}5}}=0{,}4}
{\displaystyle E(X^{2})=\sum _{x\in ImX}x^{2}\cdot Pr(X=x)}
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f_{X}(x)\mathrm {d} x}
{\displaystyle E(Y)=\int _{-\infty }^{\infty }y\cdot f_{Y}(y)\mathrm {d} y=\int _{-\infty }^{\infty }x\cdot f_{Y}(x)\mathrm {d} x}
{\displaystyle E(gX)=\int _{-\infty }^{\infty }g(x)\cdot f(x)\mathrm {d} x}
{\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x}
{\displaystyle Var(X)=E((X-E(X))^{2}\ } {\displaystyle \sigma ={\sqrt {Var(X)}}}
{\displaystyle E((X-E(X))^{2})=E(X^{2}-2\cdot E(X)\cdot X+(E(X))^{2})=E(X^{2})-2\cdot E(X)\cdot E(X)+(E(X))^{2}=E(X^{2})-(E(X))^{2}}
{\displaystyle E(X^{2})=\sum _{k=1}^{\infty }k^{2}\cdot q^{k-1}\cdot p=...={\frac {2-p}{p^{2}}}}
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...=p\cdot q}
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}
{\displaystyle E(X)={\frac {a+b}{2}}}
{\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x=...={\frac {b^{2}+a\cdot b+a^{2}}{3}}}
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...={\frac {(b-a)^{2}}{12}}}
{\displaystyle E(X)=(1-p)\cdot 0+p\cdot 1=p}
{\displaystyle \geq }
{\displaystyle \leq }
{\displaystyle (a_{n})_{n\in N}} {\displaystyle \forall \epsilon >0\ \exists n_{0}\in N\ \forall n\geq n_{0}\ |a_{n}-a|<\epsilon }
{\displaystyle \lim _{n\to \infty }a_{n}=a=lim\;a_{n}}
{\displaystyle a_{n}{\overrightarrow {n\to \infty }}a\quad a_{n}\rightarrow a}
{\displaystyle f(x_{0})=\lim _{x\to x_{0}}f(x)}
{\displaystyle \forall \epsilon >0\quad \exists \delta >0\quad \forall x\quad |x-x_{0}|<\delta \Rightarrow |f(x)-f(x_{0})|<\delta }
{\displaystyle {\frac {z}{w}}={\frac {xu+yv}{u^{2}+v^{2}}}+i*{\frac {yu-xv}{u^{2}+v^{2}}}}
{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}={\sqrt {z\cdot {\overline {z}}}}}
{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}}
{\displaystyle argz={\begin{cases}arccos{\frac {x}{|z|}},{\mbox{falls }}y\geq 0\\-arccos{\frac {x}{|z|}},{\mbox{falls }}y<0\end{cases}}}
{\displaystyle e^{i\cdot \zeta }=cos\zeta +i\cdot sin\zeta }
{\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}=e^{x}(cosy+i\cdot siny)}
{\displaystyle |z|=e^{x}\quad }
{\displaystyle argz=y\pm 2k\pi \in (-\pi ,\pi ]}
- {\displaystyle e^{i(\zeta +\psi )}=e^{i\zeta }\cdot e^{i\psi }}
- {\displaystyle e^{i\cdot n\zeta }=(e^{i\zeta })^{n}}
- {\displaystyle {\overline {e^{i\cdot \zeta }}}=e^{i(-\zeta )}={\frac {1}{e^{i\zeta }}}}
{\displaystyle z\in C{\mbox{ beliebig }}z=r\cdot e^{i\cdot \zeta }\quad (r=|z|{\mbox{ und }}\zeta =argz)}
{\displaystyle {\sqrt[{k}]{z}}={\begin{Bmatrix}{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\pi }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\cdot 2\pi }{k}}},...,{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +(k-1)\cdot 2\pi }{k}}}\end{Bmatrix}}}
{\displaystyle {\mbox{kgV}}(p(x),q(x))={\frac {p(x)\cdot q(x)}{{\mbox{ggT}}(p(x),q(x))}}}
{\displaystyle p(x)=\sum _{j=0}^{n}{y_{j}\cdot p_{j}(x)}}
{\displaystyle p_{j}(x)=\prod _{i\in {\begin{Bmatrix}0,...,n\end{Bmatrix}}\setminus {\begin{Bmatrix}j\end{Bmatrix}}}{\frac {x-x_{i}}{x_{j}-x_{i}}}}
{\displaystyle a_{n}=y_{0,n}\quad }
{\displaystyle (a_{n})_{n\in N}} {\displaystyle (b_{n})_{n\in N}} {\displaystyle (c_{n})_{n\in N}}
- {\displaystyle \lim _{n\to \infty }{(a_{n}+b_{n})}=a+b}
- {\displaystyle \lim _{n\to \infty }{(a_{n}\cdot b_{n})}=a\cdot b}
- {\displaystyle \lim _{n\to \infty }{({\frac {a_{n}}{b_{n}}})}={\frac {a}{b}}{\mbox{ falls }}b\neq 0{\mbox{ und }}b_{n}\neq 0{\mbox{ fuer alle }}n\in N}
- {\displaystyle \lim _{n\to \infty }{|a_{n}|}=|a|}
- {\displaystyle \lim _{n\to \infty }{\sqrt {|a_{n}|}}={\sqrt {|a|}}}
{\displaystyle a_{n}\leq b_{n}\leq c_{n}}{\displaystyle n\geq k}
{\displaystyle \lim _{n\to \infty }{a_{n}}=\lim _{n\to \infty }{c_{n}}=c}
{\displaystyle \lim _{n\to \infty }{b_{n}}=c}
{\displaystyle {\mathcal {O}}(g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}}
{\displaystyle \Omega (g(n))={\begin{Bmatrix}f(n)\ |\ \exists c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}}
{\displaystyle o(g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\leq c\cdot g(n)\end{Bmatrix}}}
{\displaystyle \omega (g(n))={\begin{Bmatrix}f(n)\ |\ \forall c\in R^{+}\ \exists n_{0}\ \forall n\geq n_{0}\quad f(n)\geq c\cdot g(n)\end{Bmatrix}}}
{\displaystyle \Theta (g(n))={\mathcal {O}}(g(n))\cap \Omega (g(n))}
{\displaystyle \left({\frac {f}{g}}\right)'(x)={\frac {f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^{2}}}\quad {\mbox{ (fuer alle x mit }}g(x)\neq 0{\mbox{)}}}
{\displaystyle f''(x_{0})=0{\mbox{ und }}{\begin{cases}f'''(x_{0})>0\quad {\mbox{ Rechts nach Links}}\\f'''(x_{0})<0\quad {\mbox{ Links nach Rechts}}\end{cases}}}
{\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=0}
{\displaystyle \lim _{x\to n}f(x)=\lim _{x\to n}g(x)=\infty }
{\displaystyle \lim _{x\to n}{\frac {f(x)}{g(x)}}=\lim _{x\to n}{\frac {f'(x)}{g'(x)}}=c}
{\displaystyle sinhx={\frac {e^{x}-e^{-x}}{2}}}
{\displaystyle coshx={\frac {e^{x}+e^{-x}}{2}}}
{\displaystyle sinh'x={\frac {e^{x}-(-1)\cdot e^{-x}}{2}}={\frac {e^{2}+e^{-x}}{2}}=coshx}
{\displaystyle cosh'x={\frac {e^{x}+(-1)\cdot e^{-x}}{2}}=sinhx}
{\displaystyle tanhx={\frac {sinhx}{coshx}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}}
{\displaystyle \int af(x)+bg(x)dx=a\int f(x)dx+b\int g(x)dx}
{\displaystyle {\frac {d}{dx}}(f(x)\cdot g(x))=f'(x)\cdot g(x)+f(x)\cdot g'(x)}
{\displaystyle \int u'(x)\cdot v(x)dx=u(x)\cdot v(x)-\int u(x)\cdot v'(x)dx}
{\displaystyle \int f(g(x))\cdot g'(x)dx=F(g(x))+c}
{\displaystyle t=g(x)\qquad dt=g'(x)dx}
{\displaystyle F(t)=\int f(t)dt}
{\displaystyle F(g(x))\quad }
{\displaystyle \int \limits _{a}^{b}\alpha f(x)+\beta g(x)dx=\alpha \int \limits _{a}^{b}f(x)dx+\beta \int \limits _{a}^{b}g(x)dx}
{\displaystyle \int \limits _{a}^{b}f(x)dx=\int \limits _{a}^{c}f(x)dx+\int \limits _{c}^{b}f(x)dx\quad {\mbox{ fuer alle }}a\leq c\leq b}
{\displaystyle f(x)\leq g(x){\mbox{ fuer alle }}x\in [a,b]=>\int \limits _{a}^{b}f(x)d(x)\leq \int _{a}^{b}g(x)dx}
{\displaystyle \int \limits _{a}^{b}f(x)dx=F(b)-F(a)=F(x)\mid _{a}^{b}}
{\displaystyle f:[a,b]->R\quad }
{\displaystyle A=\int \limits _{a}^{b}|f(x)|dx}
{\displaystyle A=\int \limits _{a}^{c1}f(x)dx-\int \limits _{c1}^{c2}f(x)dx+\int \limits _{c2}^{b}f(x)dx}
{\displaystyle A=\int \limits _{a}^{b}|f(x)-g(x)|dx}
{\displaystyle A=\int \limits _{a}^{c1}f(x)-g(x)dx-\int \limits _{c1}^{c2}f(x)-g(x)dx+\int \limits _{c2}^{b}f(x)-g(x)dx}
{\displaystyle \int \limits _{a}^{b}{\sqrt {a+(f'(x))^{2}}}\ dx}
{\displaystyle V=\pi \int \limits _{a}^{b}(f(x))^{2}dx}
{\displaystyle A=2\pi \int \limits _{a}^{b}f(x){\sqrt {1+(f'(x))^{2}}}\ dx}
{\displaystyle {\mbox{Gesucht: }}\int f(x)dx}
{\displaystyle x=g(t){\mbox{ umkehrbare Funktion }}dx=g'(t)dt\quad }
{\displaystyle \int f(g(t))\cdot g'(t)dt=H(t)+c}
{\displaystyle h(x){\mbox{ sei Umkehrfunktion von g }}\quad H(h(x))=\int f(x)dx}
{\displaystyle -\int {\frac {1-x^{2}}{\sqrt {1-x^{2}}}}dx=-\int {\sqrt {1-x^{2}}}dx}
{\displaystyle arcsinhx=ln(x+{\sqrt {x^{2}+1}})}
{\displaystyle arccoshx=ln(x+{\sqrt {x^{2}-1}})}
{\displaystyle arcsinh'x={\frac {1}{\sqrt {x^{2}+1}}}}
{\displaystyle arccosh'x={\frac {1}{\sqrt {x^{2}-1}}}}
{\displaystyle \int \limits _{a}^{b}{\sqrt {1-(f'(x))^{2}}}dx}