Der Name Chinon leitet sich von der Chinasäure ab, deren Oxidation u. a. zu 1,4-Benzochinon führt. Bei der Nomenklatur der Chinone geht man vom aromatischen Stammskelett aus (Benzo-, Naphtho-, Anthra- etc.), stellt die Positionen der beiden chinoiden Carbonylgruppen im Molekül voran (z. B. 1,2-, 1,4-) und endet mit „chinon" (Beispiele: 1,4-Benzochinon, 1,2-Naphthochinon, 9,10-Anthrachinon).[1] Verbindungen, deren chemische Struktur ein Chinon-Element enthält, nennt man chinoid, das Strukturelement selbst chinoides System. Die Reduktion von Chinonen liefert die zugehörigen Hydroxyaromaten, die auch Chinole genannt werden.
Die durchweg farbigen Chinone sind Oxidationsmittel, deren Redoxpotential durch Substituenten (Halogen-, Cyano-, Alkyl-, Hydroxy-Gruppen etc.) deutlich verändert wird. Man unterscheidet zwischen 1,2-(ortho-)Chinonen (z. B. Pyrrolochinolinchinon) und 1,4-(para-)Chinonen (z. B. Anthrachinon).
Formaler Ersatz des Sauerstoffs einer chinoiden Carbonyl-Gruppe durch =NH, =NOH, =N2 oder =CH2 führt zu Chinoniminen, Chinonoximen, Chinondiaziden und Chinonmethiden.
Unter den Chinonen finden sich viele Gifte, aber auch ein breites Spektrum lebensnotwendiger Vitalstoffe, z. B. Ubichinon-10 (Coenzym Q10), Vitamin K und Pyrrolochinolinchinon.
In der Natur kommen Chinone besonders häufig in Farbstoffen vor, z. B. in Pilzen, Bakterien oder Blüten. Chinoide Systeme findet man auch in verschiedenen Antibiotika. Unter anderem entstehen Chinone durch enzymatische Oxidation von Polyphenolen. So spielen sie beispielsweise bei der Braunfärbung angeschnittener Äpfel eine wichtige Rolle.
Das im Gegensatz zu den Reinsubstanzen tieffarbige 1:1-Gemisch von 1,4-Hydrochinon und 1,4-Benzochinon nennt man Chinhydron, ein klassisches Beispiel für einen Charge-Transfer-Komplex.
Die Reduktion von Chinonen zu Chinolen geschieht, wie hier am Beispiel des 1,4-Benzochinons gezeigt, mehrstufig über reaktive radikalische Zwischenverbindungen, die Semichinone.
Dabei sind die Reduktionsvorgänge mit Säure-Basen-Gleichgewichte gekoppelt.[4] Diese sind z. T. recht beständig, wie die Semichinone der Ubichinone. Die Reduktion des Chinons mit der Bildung eines Semichinons und dessen weiterführende Reduktion zum Hydrochinon sei nochmal näher am Beispiel von 1,4-Benzochinon erläutert:
Aus dem 1,4-Benzochinon 1 entsteht nach Protonierung und Reduktion das Semichinon 2. Das ungepaarte Elektron ist dabei, wie aus seiner und den drei Mesomerie-Formeln unter ihm zu sehen, über das gesamte semichinoide System delokalisiert. Die weitere Reduktion nebst Protonierung führt dann schließlich zum Hydrochinon 3.
↑Winfried R. Pötsch, Annelore Fischer und Wolfgang Müller unter Mitarbeit von Heinz Cassebaum: Lexikon bedeutender Chemiker, VEB Bibliographisches Institut Leipzig, 1988, ISBN 3-323-00185-0, S. 441.
↑Nisha T. Palackal, Michael E. Burczynski, Ronald G. Harvey, Trevor M. Penning: The Ubiquitous Aldehyde Reductase (AKR1A1) Oxidizes Proximate Carcinogen trans-Dihydrodiols to o-Quinones: Potential Role in Polycyclic Aromatic Hydrocarbon Activation. In: Biochemistry. Band 40, 2001, S. 10901, doi:10.1021/bi010872t.
↑L. Michaelis, M. P. Schubert: The Theory of Reversible Two-step Oxidation Involving Free Radicals. In: Chem. Rev. 22 (3), 1938, S. 437–470; doi:10.1021/cr60073a003.