| Impact | Details |
|---|---|
|
Execute Unauthorized Code or Commands; Alter Execution Logic; DoS: Crash, Exit, or Restart |
Scope: Confidentiality, Integrity, Availability, Other |
| Phase(s) | Mitigation |
|---|---|
|
Implementation |
Developers should anticipate that special elements (e.g. delimiters, symbols) will be injected into input vectors of their product. One defense is to create an allowlist (e.g. a regular expression) that defines valid input according to the requirements specifications. Strictly filter any input that does not match against the allowlist. Properly encode your output, and quote any elements that have special meaning to the component with which you are communicating.
|
|
Implementation |
Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. |
|
Implementation |
Use and specify an appropriate output encoding to ensure that the special elements are well-defined. A normal byte sequence in one encoding could be a special element in another.
|
|
Implementation |
Strategy: Input Validation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
|
|
Implementation |
Strategy: Output Encoding While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).
|
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. | 707 | Improper Neutralization |
| ParentOf | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 140 | Improper Neutralization of Delimiters |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 147 | Improper Neutralization of Input Terminators |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 148 | Improper Neutralization of Input Leaders |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 149 | Improper Neutralization of Quoting Syntax |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 150 | Improper Neutralization of Escape, Meta, or Control Sequences |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 151 | Improper Neutralization of Comment Delimiters |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 152 | Improper Neutralization of Macro Symbols |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 153 | Improper Neutralization of Substitution Characters |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 154 | Improper Neutralization of Variable Name Delimiters |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 155 | Improper Neutralization of Wildcards or Matching Symbols |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 156 | Improper Neutralization of Whitespace |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 157 | Failure to Sanitize Paired Delimiters |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 158 | Improper Neutralization of Null Byte or NUL Character |
| ParentOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 159 | Improper Handling of Invalid Use of Special Elements |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 160 | Improper Neutralization of Leading Special Elements |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 162 | Improper Neutralization of Trailing Special Elements |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 164 | Improper Neutralization of Internal Special Elements |
| ParentOf | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 464 | Addition of Data Structure Sentinel |
| ParentOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 790 | Improper Filtering of Special Elements |
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | Category Category - a CWE entry that contains a set of other entries that share a common characteristic. | 1019 | Validate Inputs |
| Phase | Note |
|---|---|
| Implementation | REALIZATION: This weakness is caused during implementation of an architectural security tactic. |
Class: Not Language-Specific (Undetermined Prevalence)
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
| Reference | Description |
|---|---|
|
Read arbitrary files from mail client by providing a special MIME header that is internally used to store pathnames for attachments.
|
|
|
Setuid program does not cleanse special escape sequence before sending data to a mail program, causing the mail program to process those sequences.
|
|
|
Multi-channel issue. Terminal escape sequences not filtered from log files.
|
|
|
Multi-channel issue. Terminal escape sequences not filtered from log files.
|
| Ordinality | Description |
|---|---|
|
Primary
|
(where the weakness exists independent of other weaknesses)
|
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 990 | SFP Secondary Cluster: Tainted Input to Command |
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1347 | OWASP Top Ten 2021 Category A03:2021 - Injection |
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1407 | Comprehensive Categorization: Improper Neutralization |
Rationale
This CWE entry is a level-1 Class (i.e., a child of a Pillar). It might have lower-level children that would be more appropriateComments
Examine children of this entry to see if there is a better fitRelationship
Relationship
Research Gap
| Mapped Taxonomy Name | Node ID | Fit | Mapped Node Name |
|---|---|---|---|
| PLOVER | Special Elements (Characters or Reserved Words) | ||
| PLOVER | Custom Special Character Injection | ||
| Software Fault Patterns | SFP24 | Tainted input to command |
| Submissions | |||
|---|---|---|---|
| Submission Date | Submitter | Organization | |
|
2006年07月19日
(CWE Draft 3, 2006年07月19日) |
PLOVER | ||
| Modifications | |||
| Modification Date | Modifier | Organization | |
|
2024年02月29日
(CWE 4.14, 2024年02月29日) |
CWE Content Team | MITRE | |
| updated Mapping_Notes | |||
| 2023年06月29日 | CWE Content Team | MITRE | |
| updated Mapping_Notes | |||
| 2023年04月27日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2023年01月31日 | CWE Content Team | MITRE | |
| updated Description, Potential_Mitigations | |||
| 2022年04月28日 | CWE Content Team | MITRE | |
| updated Related_Attack_Patterns | |||
| 2021年10月28日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2020年06月25日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2020年02月24日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations, Relationships | |||
| 2017年11月08日 | CWE Content Team | MITRE | |
| updated Modes_of_Introduction, Potential_Mitigations, Relationships | |||
| 2017年05月03日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2017年01月19日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2014年07月30日 | CWE Content Team | MITRE | |
| updated Relationships, Taxonomy_Mappings | |||
| 2012年05月11日 | CWE Content Team | MITRE | |
| updated Common_Consequences, Relationships | |||
| 2011年06月01日 | CWE Content Team | MITRE | |
| updated Common_Consequences | |||
| 2011年03月29日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2010年12月13日 | CWE Content Team | MITRE | |
| updated Description | |||
| 2010年04月05日 | CWE Content Team | MITRE | |
| updated Description, Name | |||
| 2009年12月28日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2009年07月27日 | CWE Content Team | MITRE | |
| updated Applicable_Platforms, Description, Observed_Examples, Other_Notes, Potential_Mitigations, Relationship_Notes, Relationships, Research_Gaps, Taxonomy_Mappings, Weakness_Ordinalities | |||
| 2009年03月10日 | CWE Content Team | MITRE | |
| updated Description, Name | |||
| 2008年09月08日 | CWE Content Team | MITRE | |
| updated Description, Relationships, Other_Notes, Taxonomy_Mappings | |||
| 2008年07月01日 | Eric Dalci | Cigital | |
| updated Description, Potential_Mitigations, Time_of_Introduction | |||
| Previous Entry Names | |||
| Change Date | Previous Entry Name | ||
| 2008年04月11日 | Special Elements (Characters or Reserved Words) | ||
| 2009年03月10日 | Failure to Sanitize Special Elements | ||
| 2010年04月05日 | Improper Sanitization of Special Elements | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.