Mie potential

From SklogWiki
Jump to navigation Jump to search

The Mie potential was proposed by Gustav Mie in 1903 [1] . It is given by

Φ 12 ( r ) = ( n n m ) ( n m ) m / ( n m ) ϵ [ ( σ r ) n ( σ r ) m ] {\displaystyle \Phi _{12}(r)=\left({\frac {n}{n-m}}\right)\left({\frac {n}{m}}\right)^{m/(n-m)}\epsilon \left[\left({\frac {\sigma }{r}}\right)^{n}-\left({\frac {\sigma }{r}}\right)^{m}\right]} {\displaystyle \Phi _{12}(r)=\left({\frac {n}{n-m}}\right)\left({\frac {n}{m}}\right)^{m/(n-m)}\epsilon \left[\left({\frac {\sigma }{r}}\right)^{n}-\left({\frac {\sigma }{r}}\right)^{m}\right]}

where:

  • r := | r 1 r 2 | {\displaystyle r:=|\mathbf {r} _{1}-\mathbf {r} _{2}|} {\displaystyle r:=|\mathbf {r} _{1}-\mathbf {r} _{2}|}
  • Φ 12 ( r ) {\displaystyle \Phi _{12}(r)} {\displaystyle \Phi _{12}(r)} is the intermolecular pair potential between two particles at a distance r;
  • σ {\displaystyle \sigma } {\displaystyle \sigma } is the value of r {\displaystyle r} {\displaystyle r} at Φ ( r ) = 0 {\displaystyle \Phi (r)=0} {\displaystyle \Phi (r)=0} ;
  • ϵ {\displaystyle \epsilon } {\displaystyle \epsilon } : well depth (energy)

Note that when n = 12 {\displaystyle n=12} {\displaystyle n=12} and m = 6 {\displaystyle m=6} {\displaystyle m=6} this becomes the Lennard-Jones model.

The location of the potential minimum is given by

r m i n = ( n m σ n m ) 1 / ( n m ) {\displaystyle r_{min}=\left({\frac {n}{m}}\sigma ^{n-m}\right)^{1/(n-m)}} {\displaystyle r_{min}=\left({\frac {n}{m}}\sigma ^{n-m}\right)^{1/(n-m)}}

(14,7) model[edit ]

[2] [3]

Second virial coefficient[edit ]

The second virial coefficient [4] [5] [6] and the Vliegenthart–Lekkerkerker relation [7] .

References[edit ]

  1. Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik 11 pp. 657-697 (1903) (Note: check the content of this reference)
  2. Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics 128 154514 (2008)
  3. Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics 129 024507 (2008)
  4. D. M. Heyes, G. Rickayzen, S. Pieprzyk and A. C. Brańka "The second virial coefficient and critical point behavior of the Mie Potential", Journal of Chemical Physics 145 084505 (2016)
  5. D. M. Heyes and T. Pereira de Vasconcelos "The second virial coefficient of bounded Mie potentials", Journal of Chemical Physics 147 214504 (2017)
  6. D. M. Heyes and  T. Pereira de Vasconcelos "Erratum: "The second virial coefficient of bounded Mie potentials" [J. Chem. Phys. 147, 214504 (2017)]", Journal of Chemical Physics 148 169903 (2018)
  7. V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics 134 144111 (2011)

Related reading

Retrieved from "http://www.sklogwiki.org/SklogWiki/index.php?title=Mie_potential&oldid=20133"