LaTeX math markup
From SklogWiki
Jump to navigation
Jump to search
Note: this page is a subsection of the Wikipedia page Help:Displaying a formula.
Subscripts, superscripts, integrals[edit ]
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
{\displaystyle a^{2}} | {\displaystyle a^{2},円\!} |
Subscript | a_2 |
{\displaystyle a_{2}} | {\displaystyle a_{2},円\!} |
Grouping | a^{2+2} |
{\displaystyle a^{2+2}} | {\displaystyle a^{2+2},円\!} |
a_{i,j} |
{\displaystyle a_{i,j}} | {\displaystyle a_{i,j},円\!} | |
Combining sub & super | x_2^3 |
{\displaystyle x_{2}^{3}} | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
{\displaystyle \sideset {_{1}^{2}}{_{3}^{4}}\prod _{a}^{b}} | |
{}_1^2\!\Omega_3^4 |
{\displaystyle {}_{1}^{2}\!\Omega _{3}^{4}} | ||
Stacking | \overset{\alpha}{\omega} |
{\displaystyle {\overset {\alpha }{\omega }}} | |
\underset{\alpha}{\omega} |
{\displaystyle {\underset {\alpha }{\omega }}} | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
{\displaystyle {\overset {\alpha }{\underset {\gamma }{\omega }}}} | ||
\stackrel{\alpha}{\omega} |
{\displaystyle {\stackrel {\alpha }{\omega }}} | ||
Derivative (forced PNG) | x', y, f', f\! |
{\displaystyle x',y'',f',f''\!} | |
Derivative (f in italics may overlap primes in HTML) | x', y, f', f |
{\displaystyle x',y'',f',f''} | {\displaystyle x',y'',f',f''\!} |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
{\displaystyle x^{\prime },y^{\prime \prime }} | {\displaystyle x^{\prime },y^{\prime \prime },円\!} |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
{\displaystyle x\prime ,y\prime \prime } | {\displaystyle x\prime ,y\prime \prime ,円\!} |
Derivative dots | \dot{x}, \ddot{x} |
{\displaystyle {\dot {x}},{\ddot {x}}} | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
{\displaystyle {\hat {a}}\ {\bar {b}}\ {\vec {c}}} | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
{\displaystyle {\overrightarrow {ab}}\ {\overleftarrow {cd}}\ {\widehat {def}}} | ||
\overline{g h i} \ \underline{j k l} |
{\displaystyle {\overline {ghi}}\ {\underline {jkl}}} | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
{\displaystyle A{\xleftarrow {n+\mu -1}}B{\xrightarrow[{T}]{n\pm i-1}}C} | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
{\displaystyle \overbrace {1+2+\cdots +100} ^{5050}} | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
{\displaystyle \underbrace {a+b+\cdots +z} _{26}} | |
Sum | \sum_{k=1}^N k^2 |
{\displaystyle \sum _{k=1}^{N}k^{2}} | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
{\displaystyle \textstyle \sum _{k=1}^{N}k^{2}} | |
Product | \prod_{i=1}^N x_i |
{\displaystyle \prod _{i=1}^{N}x_{i}} | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
{\displaystyle \textstyle \prod _{i=1}^{N}x_{i}} | |
Coproduct | \coprod_{i=1}^N x_i |
{\displaystyle \coprod _{i=1}^{N}x_{i}} | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
{\displaystyle \textstyle \coprod _{i=1}^{N}x_{i}} | |
Limit | \lim_{n \to \infty}x_n |
{\displaystyle \lim _{n\to \infty }x_{n}} | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
{\displaystyle \textstyle \lim _{n\to \infty }x_{n}} | |
Integral | \int\limits_{-N}^{N} e^x,円 dx |
{\displaystyle \int \limits _{-N}^{N}e^{x},円dx} | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x,円 dx |
{\displaystyle \textstyle \int \limits _{-N}^{N}e^{x},円dx} | |
Double integral | \iint\limits_{D} ,円 dx,円dy |
{\displaystyle \iint \limits _{D},円dx,円dy} | |
Triple integral | \iiint\limits_{E} ,円 dx,円dy,円dz |
{\displaystyle \iiint \limits _{E},円dx,円dy,円dz} | |
Quadruple integral | \iiiint\limits_{F} ,円 dx,円dy,円dz,円dt |
{\displaystyle \iiiint \limits _{F},円dx,円dy,円dz,円dt} | |
Path integral | \oint\limits_{C} x^3,円 dx + 4y^2,円 dy |
{\displaystyle \oint \limits _{C}x^{3},円dx+4y^{2},円dy} | |
Intersections | \bigcap_1^{n} p |
{\displaystyle \bigcap _{1}^{n}p} | |
Unions | \bigcup_1^{k} p |
{\displaystyle \bigcup _{1}^{k}p} |
Fractions, matrices, multilines[edit ]
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{2}{4}=0.5 |
{\displaystyle {\frac {2}{4}}=0.5} |
Small Fractions | \tfrac{2}{4} = 0.5 |
{\displaystyle {\tfrac {2}{4}}=0.5} |
Large (normal) Fractions | \dfrac{2}{4} = 0.5 |
{\displaystyle {\dfrac {2}{4}}=0.5} |
Large (nested) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a |
{\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a} |
Binomial coefficients | \binom{n}{k} |
{\displaystyle {\binom {n}{k}}} |
Small Binomial coefficients | \tbinom{n}{k} |
{\displaystyle {\tbinom {n}{k}}} |
Large (normal) Binomial coefficients | \dbinom{n}{k} |
{\displaystyle {\dbinom {n}{k}}} |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
{\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}} |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
{\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}} | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
{\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}} | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
{\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \0円&\cdots &0\end{bmatrix}}} | |
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
{\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}} | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
{\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}} | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
{\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}} | |
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
{\displaystyle f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\3円n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}} |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
{\displaystyle {\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\\\end{aligned}}} |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
{\displaystyle {\begin{alignedat}{2}f(x)&=(a-b)^{2}\\&=a^{2}-2ab+b^{2}\\\end{alignedat}}} | |
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
{\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}} |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
{\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}} |
Breaking up a long expression so that it wraps when necessary | <math>f(x) ,円\!</math> <math>= \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
{\displaystyle f(x),円\!}{\displaystyle =\sum _{n=0}^{\infty }a_{n}x^{n}}{\displaystyle =a_{0}+a_{1}x+a_{2}x^{2}+\cdots } |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
{\displaystyle {\begin{cases}3x+5y+z\7円x-2y+4z\\-6x+3y+2z\end{cases}}} |