| Reference | Species | Other Genes Addressed |
|---|---|---|
| Lim WJ, et al. (2025) Fluconazole resistance and CDR1 expression in Candida albicans mediated by the hyperactive Tac1-5 transcriptional activator requires Tlo proteins. Microbiology (Reading) 171(9) CGD Papers Entry Pubmed Entry | C. albicans | |CDR1 |CDR2 |CTA26 |ECE1 |HWP1 |MED3 |PDR16 |RTA3 |SOD5 |TAC1 |TLO1 |
| Lortal L, et al. (2025) Candidalysin biology and activation of host cells. mBio :e0060324 CGD Papers Entry Pubmed Entry | C. albicans | |AHR1 |ALS3 |C1_05920W_A |CPH1 |DCK1 |ECE1 |EFG1 |FLO8 |HGT2 |HWP1 |KEX1 |KEX2 |NRG1 |PRA1 |MORE |
| Ottaviano E, et al. (2025) Pilocarpine inhibits Candida albicans SC5314 biofilm maturation by altering lipid, sphingolipid, and protein content. Microbiol Spectr :e0298724 CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |BGL2 |CHT2 |DEF1 |ERG2 |HYR1 |RFX2 |
| Wakade RS, et al. (2024) Temporal dynamics of Candida albicans morphogenesis and gene expression reveals distinctions between in vitro and in vivo filamentation. mSphere :e0011024 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |BRG1 |CPH1 |CPH2 |ECE1 |EFG1 |HYR1 |NRG1 |PES1 |TEC1 |UME6 |YWP1 |
| Wakade RS, et al. (2024) The role of the C. albicans transcriptional repressor NRG1 during filamentation and disseminated candidiasis is strain dependent. mSphere :e0078523 CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |ECE1 |HWP1 |HYR1 |NRG1 |UME6 |
| Znaidi S (2024) Full Circle: When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in Candida albicans. mSphere :e0064423 CGD Papers Entry Pubmed Entry | C. albicans | |CAP1 |CTA8 |ECE1 |EFG1 |GPX2 |MNL1 |MSN4 |NDT80 |RBT4 |RHD1 |SFL1 |SFL2 |SKN7 |SSU81 |MORE |
| Bataineh MTA, et al. (2022) Exploring the effect of estrogen on Candida albicans hyphal cell wall glycans and ergosterol synthesis. Front Cell Infect Microbiol 12:977157 CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |ECE1 |GCV2 |HGT20 |HWP1 |MEP1 |SOD5 |
| Ibe C and Munro CA (2021) Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses J Fungi (Basel) 7:739 CGD Papers Entry Pubmed Entry | C. albicans | |CEK1 |DCW1 |DFG5 |ESP1 |HOG1 |HWP1 |HWP2 |HYR1 |MKC1 |MP65 |PGA10 |PGA4 |PGA5 |PGA59 |MORE |
| Ruben S, et al. (2020) Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. mBio 11(2) CGD Papers Entry Pubmed Entry | C. albicans | |AHR1 |ALS3 |BCR1 |BRG1 |CPH1 |ECE1 |EFG1 |MCM1 |NRG1 |TEC1 |TUP1 |UME6 |
| McCall AD, et al. (2019) Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 5(1):21 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS3 |EAP1 |HWP2 |HYR1 |YWP1 |
| McCall AD, et al. (2019) Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 5:21 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS3 |EAP1 |HOG1 |HWP2 |HYR1 |SFL1 |YWP1 |
| McCall AD, et al. (2018) Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies. PLoS Pathog 14(9):e1007316 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |ECE1 |HWP1 |HYR1 |NDT80 |PGA10 |PLB1 |ROB1 |SAP5 |SFL1 |SFL2 |
| Reen FJ, et al. (2016) Exploiting Interkingdom Interactions for Development of Small-Molecule Inhibitors of Candida albicans Biofilm Formation. Antimicrob Agents Chemother 60(10):5894-905 CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |C1_05920W_A |ECE1 |HWP1 |
| Gil-Bona A, et al. (2015) Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 127(Pt B):340-351 CGD Papers Entry Pubmed Entry Reference LINKOUT Web Supplement Data | C. albicans | |ACT1 |ADE1 |ADE12 |ADE13 |ADE17 |ADE5,7 |ADH1 |ADH2 |AGE3 |AGM1 |AHA1 |AHP1 |AIP2 |ALI1 |MORE |
| Xu W, et al. (2015) Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol 13(2):e1002076 CGD Papers Entry Pubmed Entry Reference LINKOUT Reference LINKOUT Reference LINKOUT Web Supplement Data | C. albicans | |ACE2 |ACO1 |ACS2 |ADH1 |ADH5 |ALS1 |ALS2 |ALS3 |ALS4 |ALS5 |ALS6 |ALS7 |ALS9 |AOX2 |MORE |
| Cabral V, et al. (2014) Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog 10(12):e1004542 CGD Papers Entry Pubmed Entry Reference LINKOUT Reference LINKOUT Reference LINKOUT Web Supplement Data | C. albicans | |PGA15 |PGA19 |PGA22 |PGA32 |PGA37 |PGA42 |PGA59 |PHR2 |
| Carlisle PL and Kadosh D (2013) A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell 24(3):246-60 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |ALS3 |ALS3 |ARF3 |ARF3 |ARO9 |ARO9 |BRG1 |BRG1 |C1_10980W_A |C1_11720W_A |C2_01630W_A |C2_09760W_A |C3_00590W_A |C3_05320W_A |MORE |
| Martin R, et al. (2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One 8(3):e58613 CGD Papers Entry Pubmed Entry Reference LINKOUT Reference LINKOUT Reference LINKOUT Reference LINKOUT Web Supplement Web Supplement Data | C. albicans | |ALS3 |ALS3 |C1_05920W_A |DCK1 |DCK1 |ECE1 |ECE1 |HGT2 |HGT2 |HWP1 |HWP1 |RAC1 |RAC1 |RBT1 |MORE |
| Fanning S, et al. (2012) Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 11(7):896-904 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. albicans | |ADH1 |ADH1 |ALS1 |ALS1 |ALS2 |ALS2 |ALS3 |ALS3 |ALS7 |ALS7 |ARO9 |ARO9 |BCR1 |BCR1 |MORE |
| Klis FM, et al. (2011) A mass spectrometric view of the fungal wall proteome. Future Microbiol 6(8):941-51 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. albicans | |ALS1 |ALS1 |ALS2 |ALS2 |ALS3 |ALS3 |ALS4 |ALS4 |ALS5 |ALS5 |ALS6 |ALS6 |ALS7 |ALS7 |MORE |
| Shareck J, et al. (2011) Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryot Cell 10(4):565-77 CGD Papers Entry Pubmed Entry Reference LINKOUT Data | C. albicans | |ALS3 |ALS3 |ANT1 |ANT1 |BCR1 |BCR1 |BEM2 |BEM2 |BRG1 |BRG1 |C7_03480W_A |CAS4 |CAS4 |CAT2 |MORE |
| Sosinska GJ, et al. (2011) Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 157(Pt 1):136-46 CGD Papers Entry Pubmed Entry Data | C. albicans | |ALS1 |ALS1 |ALS3 |ALS3 |ALS4 |ALS4 |CHT2 |CHT2 |CRH11 |CRH11 |ECM33 |ECM33 |HWP1 |HWP1 |MORE |
| Epp E, et al. (2010) Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 75(5):1182-98 CGD Papers Entry Pubmed Entry Reference LINKOUT Data | C. albicans | |ALS10 |ALS3 |ALS3 |APL1 |ARP2 |ARP2 |ARP3 |ARP3 |BMT8 |BMT8 |C1_00270W_A |C1_14190C_A |C2_03450W_A |C2_05560W_A |MORE |
| Lohse MB and Johnson AD (2010) Temporal anatomy of an epigenetic switch in cell programming: the white-opaque transition of C. albicans. Mol Microbiol 78(2):331-43 CGD Papers Entry Pubmed Entry Reference LINKOUT Data | C. albicans | |ADAEC |ADAEC |ADH3 |ADH3 |AGP2 |AGP2 |ALD6 |ALD6 |ALK2 |ALK2 |ANT1 |ANT1 |ARR3 |ARR3 |MORE |
| Rosenbach A, et al. (2010) Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell 9(7):1075-86 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. albicans | |ADH5 |ADH5 |ADR1 |ADR1 |AFG3 |AFG3 |ALA1 |ALA1 |ALS1 |ALS1 |ALS10 |ATO1 |ATO1 |C1_01530C_A |MORE |
| Spiering MJ, et al. (2010) Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryot Cell 9(2):251-65 CGD Papers Entry Pubmed Entry Reference LINKOUT Data | C. albicans | |ALS3 |ALS3 |C1_07220W_A |CR_09070C_A |ECE1 |ECE1 |HSP104 |HSP104 |HSP12 |HSP12 |HSP60 |HSP60 |HSP70 |HSP70 |MORE |
| Hua X, et al. (2009) Morphogenic and genetic differences between Candida albicans strains are associated with keratomycosis virulence. Mol Vis 15:1476-84 CGD Papers Entry Pubmed Entry | C. albicans | |AAP1 |AAP1 |AAT21 |AAT21 |ACB1 |ACB1 |ACO2 |ACO2 |ADAEC |ADAEC |AHP1 |AHP1 |ALD6 |ALD6 |MORE |
| Klis FM, et al. (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9(7):1013-28 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. albicans | |ALS1 |ALS1 |ALS3 |ALS3 |ALS4 |ALS4 |ALS5 |ALS5 |ALS6 |ALS6 |ALS7 |ALS7 |ALS9 |ALS9 |MORE |
| Walker LA, et al. (2009) Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet Biol 46(2):210-9 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. albicans | |ACH1 |ACH1 |ACO1 |ACO1 |ACS1 |ACS1 |ADAEC |ADAEC |ADH1 |ADH1 |ADR1 |ADR1 |AHP1 |AHP1 |MORE |
| Banerjee M, et al. (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19(4):1354-65 CGD Papers Entry Pubmed Entry Reference LINKOUT Web Supplement Data | C. albicans | |ALS3 |ALS3 |C7_02660C_A |ECE1 |ECE1 |HWP1 |HWP1 |HYR1 |HYR1 |NRG1 |NRG1 |PHR1 |PHR1 |RAX2 |MORE |