pandas.Series.notna#
- Series.notna()[source] #
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True). NA values, such as None ornumpy.NaN, get mapped to False values.- Returns:
- Series
Mask of bool values for each element in Series that indicates whether an element is not an NA value.
See also
Series.notnullAlias of notna.
Series.isnaBoolean inverse of notna.
Series.dropnaOmit axes labels with missing values.
notnaTop-level notna.
Examples
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939年05月27日'), ... pd.Timestamp('1940年04月25日')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939年05月27日 Batman Batmobile 2 NaN 1940年04月25日 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool