Standard library header <numeric>
From cppreference.com
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Standard library headers
<compare> (C++20)
<contracts> (C++26)
<coroutine> (C++20)
<cstdint> (C++11)
<source_location> (C++20)
<stdfloat> (C++23)
<version> (C++20)
<concepts> (C++20)
<debugging> (C++26)
<stacktrace> (C++23)
<system_error> (C++11)
<memory_resource> (C++17)
<scoped_allocator> (C++11)
<type_traits> (C++11)
<ratio> (C++11)
<any> (C++17)
<bit> (C++20)
<charconv> (C++17)
<expected> (C++23)
<format> (C++20)
<optional> (C++17)
<stdbit.h> (C++26)
<tuple> (C++11)
<typeindex> (C++11)
<variant> (C++17)
<array> (C++11)
<flat_map> (C++23)
<flat_set> (C++23)
<forward_list> (C++11)
<hive> (C++26)
<mdspan> (C++23)
<span> (C++20)
<unordered_map> (C++11)
<unordered_set> (C++11)
<generator> (C++23)
<ranges> (C++20)
<numeric>
<cuchar> (C++11)
<string_view> (C++17)
<codecvt> (C++11/17/26*)
<regex> (C++11)
<cfenv> (C++11)
<linalg> (C++26)
<numbers> (C++20)
<random> (C++11)
<simd> (C++26)
<stdckdint.h> (C++26)
<chrono> (C++11)
<ccomplex> (C++11/17/20*)
<ciso646> (until C++20)
<cstdalign> (C++11/17/20*)
<cstdbool> (C++11/17/20*)
<ctgmath> (C++11/17/20*)
<cinttypes> (C++11)
<filesystem> (C++17)
<print> (C++23)
<spanstream> (C++23)
<strstream> (C++98/26*)
<syncstream> (C++20)
<atomic> (C++11)
<barrier> (C++20)
<condition_variable> (C++11)
<future> (C++11)
<hazard_pointer> (C++26)
<latch> (C++20)
<mutex> (C++11)
<rcu> (C++26)
<semaphore> (C++20)
<shared_mutex> (C++14)
<stdatomic.h> (C++23)
<stop_token> (C++20)
<thread> (C++11)
<execution> (C++17)
This header is part of the numeric library.
Functions
(C++23)
(algorithm function object)[edit]
(C++17)
(function template) [edit]
(C++17)
(function template) [edit]
(C++26)
(function template) [edit]
[edit] Synopsis
namespace std { // accumulate template<class InputIt, class T> constexpr T accumulate(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T accumulate(InputIt first, InputIt last, T init, BinaryOperation binary_op); // reduce template<class InputIt> constexpr typename iterator_traits<InputIt>::value_type reduce(InputIt first, InputIt last); template<class InputIt, class T> constexpr T reduce(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt> typename iterator_traits<ForwardIt>::value_type reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt, class T> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op); // inner product template<class InputIt1, class InputIt2, class T> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); // transform reduce template<class InputIt1, class InputIt2, class T> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class InputIt, class T, class BinaryOperation, class UnaryOperation> constexpr T transform_reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation1, class BinaryOperation2> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation, class UnaryOperation> T transform_reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); // partial sum template<class InputIt, class OutputIt> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); // exclusive scan template<class InputIt, class OutputIt, class T> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init); template<class InputIt, class OutputIt, class T, class BinaryOperation> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op); // inclusive scan template<class InputIt, class OutputIt> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class InputIt, class OutputIt, class BinaryOperation, class T> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class T> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, T init); // transform exclusive scan template<class InputIt, class OutputIt, class T, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op, UnaryOperation unary_op); // transform inclusive scan template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op); template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation, class T> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation, class T> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op, T init); // adjacent difference template<class InputIt, class OutputIt> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); // iota template<class ForwardIt, class T> constexpr void iota(ForwardIt first, ForwardIt last, T value); namespace ranges { template<class O, class T> using iota_result = out_value_result<O, T>; template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T> requires indirectly_writable<O, const T&> constexpr iota_result<O, T> iota(O first, S last, T value); template<weakly_incrementable T, output_range<const T&> R> constexpr iota_result<borrowed_iterator_t<R>, T> iota(R&& r, T value); } // greatest common divisor template<class M, class N> constexpr common_type_t<M, N> gcd(M m, N n); // least common multiple template<class M, class N> constexpr common_type_t<M, N> lcm(M m, N n); // midpoint template<class T> constexpr T midpoint(T a, T b) noexcept; template<class T> constexpr T* midpoint(T* a, T* b); // saturation arithmetic template<class T> constexpr T add_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T sub_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T mul_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T div_sat(T x, T y) noexcept; // freestanding template<class T, class U> constexpr T saturate_cast(U x) noexcept; // freestanding }