| Impact | Details |
|---|---|
|
Bypass Protection Mechanism |
Scope: Access Control |
| Phase(s) | Mitigation |
|---|---|
|
Architecture and Design |
Strategy: Input Validation Avoid making decisions based on names of resources (e.g. files) if those resources can have alternate names.
|
|
Implementation |
Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. |
|
Implementation |
Strategy: Output Encoding Use and specify an output encoding that can be handled by the downstream component that is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an encoding is not specified, a downstream component may choose a different encoding, either by assuming a default encoding or automatically inferring which encoding is being used, which can be erroneous. When the encodings are inconsistent, the downstream component might treat some character or byte sequences as special, even if they are not special in the original encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks; they even might be able to bypass protection mechanisms that assume the original encoding is also being used by the downstream component.
|
|
Implementation |
Strategy: Input Validation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
|
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 172 | Encoding Error |
| CanPrecede | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 289 | Authentication Bypass by Alternate Name |
| Phase | Note |
|---|---|
| Implementation |
Class: Not Language-Specific (Undetermined Prevalence)
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). | 884 | CWE Cross-section |
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 992 | SFP Secondary Cluster: Faulty Input Transformation |
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1407 | Comprehensive Categorization: Improper Neutralization |
Rationale
This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.Comments
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.| Mapped Taxonomy Name | Node ID | Fit | Mapped Node Name |
|---|---|---|---|
| PLOVER | Alternate Encoding |
| CAPEC-ID | Attack Pattern Name |
|---|---|
| CAPEC-120 | Double Encoding |
| CAPEC-267 | Leverage Alternate Encoding |
| CAPEC-3 | Using Leading 'Ghost' Character Sequences to Bypass Input Filters |
| CAPEC-4 | Using Alternative IP Address Encodings |
| CAPEC-52 | Embedding NULL Bytes |
| CAPEC-53 | Postfix, Null Terminate, and Backslash |
| CAPEC-64 | Using Slashes and URL Encoding Combined to Bypass Validation Logic |
| CAPEC-71 | Using Unicode Encoding to Bypass Validation Logic |
| CAPEC-72 | URL Encoding |
| CAPEC-78 | Using Escaped Slashes in Alternate Encoding |
| CAPEC-79 | Using Slashes in Alternate Encoding |
| CAPEC-80 | Using UTF-8 Encoding to Bypass Validation Logic |
| Submissions | |||
|---|---|---|---|
| Submission Date | Submitter | Organization | |
|
2006年07月19日
(CWE Draft 3, 2006年07月19日) |
PLOVER | ||
| Modifications | |||
| Modification Date | Modifier | Organization | |
| 2023年06月29日 | CWE Content Team | MITRE | |
| updated Mapping_Notes | |||
| 2023年04月27日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2023年01月31日 | CWE Content Team | MITRE | |
| updated Description | |||
| 2020年06月25日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2020年02月24日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations, Relationships | |||
| 2019年06月20日 | CWE Content Team | MITRE | |
| updated Related_Attack_Patterns | |||
| 2019年01月03日 | CWE Content Team | MITRE | |
| updated Related_Attack_Patterns | |||
| 2017年11月08日 | CWE Content Team | MITRE | |
| updated Applicable_Platforms | |||
| 2014年07月30日 | CWE Content Team | MITRE | |
| updated Relationships | |||
| 2012年10月30日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2012年05月11日 | CWE Content Team | MITRE | |
| updated Related_Attack_Patterns, Relationships | |||
| 2011年06月01日 | CWE Content Team | MITRE | |
| updated Common_Consequences | |||
| 2011年03月29日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2010年12月13日 | CWE Content Team | MITRE | |
| updated Name | |||
| 2009年07月27日 | CWE Content Team | MITRE | |
| updated Potential_Mitigations | |||
| 2008年09月08日 | CWE Content Team | MITRE | |
| updated Relationships, Taxonomy_Mappings | |||
| 2008年07月01日 | Eric Dalci | Cigital | |
| updated Potential_Mitigations, Time_of_Introduction | |||
| Previous Entry Names | |||
| Change Date | Previous Entry Name | ||
| 2008年04月11日 | Alternate Encoding | ||
| 2010年12月13日 | Failure to Handle Alternate Encoding | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.